首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Woody biomass on farms and in the landscapes of Rwanda
Authors:J D Ndayambaje  T Mugiraneza  G M J Mohren
Institution:1. Southern Agriculture Zone Division, Rwanda Agricultural Board (RAB), P.O. Box 617, Butare, Rwanda
2. Forest Ecology and Forest Management Group, Wageningen University, P.O. Box 47, 6700 AA, Wageningen, The Netherlands
3. Centre for Geographic Information Systems and Remote Sensing, National University of Rwanda, P.O. Box 212, Butare, Rwanda
Abstract:Scattered trees and woodlots are a prominent feature of agricultural landscapes of Rwanda. However, little is known about their characteristics and their contribution to farmers’ wood needs. Here, we present the results of a survey of (a) the abundance, composition, and size of trees and woodlots in the low, medium and high altitude regions of Rwanda, (b) total woody biomass and biomass for fuelwood at farm and landscape levels, and (c) opportunities for their sustainable use. Scattered trees occurred in all landscapes at minimum densities ranging from 20 to 167 trees ha?1. Of the 56 tree genera recorded, a handful of tree species dominated, with the ten most common species accounting for over 70 % of all trees recorded. Most of them provided fuelwood, fruit and timber to farm owners. Woodlots occurred on about 40 % of the survey farms and consisted for 90 % of eucalyptus coppice. Woody biomass dry weight of scattered trees on agricultural landscape was 0.7 t ha?1 in low altitude region (LAR), 3 t ha?1 in medium altitude region (MAR), and 1 t ha?1 in high altitude region (HAR). Dry weight woody biomass in woodlots (<0.5 ha) was the highest in MAR (221 t ha?1), followed by that in HAR (205 t ha?1) and least in LAR (96 t ha?1). About 80 % of total woody biomass in trees and woodlots on farmland was useable biomass for fuelwood, indicating that the production of fuelwood on agricultural land was important. Woody biomass on agricultural land was higher than that in forest plantations, and was potentially sufficient to reduce the gap between fuelwood supply and demand when the entire agricultural area was taken into account. In order to achieve this on agricultural land, while contributing to food security and environmental conservation as well, smallholder farmers must be provided with incentives to grow woodlots and to adopt agroforestry systems, thereby considering the trade-offs with agricultural production. Strategies to encourage smallholder farmers to increase the use of agroforestry have to account for the farmers’ ecological and socioeconomic conditions.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号