首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effects of competition and climate variables on modelling height to live crown for three boreal tree species in Alberta,Canada
Authors:Yuqing Yang  Shongming Huang
Institution:1.Biometrics Unit, Forest Management Branch,Alberta Agriculture and Forestry,Edmonton,Canada
Abstract:Using tree data from permanent sample plots and climate data from the ClimateWNA model, mixed-effects height to live crown (HTC) models were developed for three boreal tree species in Alberta, Canada: trembling aspen (Populus tremuloides Michx.), lodgepole pine (Pinus contorta var. latifolia Engelm.) and white spruce (Picea glauca (Moench) Voss). Three model forms, the Wykoff model, a logistic model and an exponential model, were evaluated for each species. Tree height was the most significant predictor of HTC and was used in all models. In addition, we investigated the effects of competition and climatic variables on HTC modelling. Height–diameter ratio and either total stand basal area or basal area of coniferous trees were used as competition measures in the models. Different climate variables were evaluated, and spring degree-days below 0 °C, mean annual precipitation and summer heat–moisture index were incorporated into the aspen, lodgepole pine and white spruce models, respectively. Site index was only significant in lodgepole pine models. Residual variances were modelled as functions of tree height to account for heteroscedasticity still present in the mixed-effects models after the inclusion of random parameters. Based on model fitting and validation results as well as biological realism, the mixed-effects Wykoff models were the best for aspen and white spruce, and the mixed-effects logistic model was the best for lodgepole pine.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号