首页 | 本学科首页   官方微博 | 高级检索  
     检索      

洱海流域典型农区不同施肥处理下稻田氨挥发变化特征
引用本文:吴凡,张克强,谢坤,王风,王瑞琦,尹高飞,沈仕洲.洱海流域典型农区不同施肥处理下稻田氨挥发变化特征[J].农业环境科学学报,2019,38(8):1735-1742.
作者姓名:吴凡  张克强  谢坤  王风  王瑞琦  尹高飞  沈仕洲
作者单位:农业农村部环境保护科研监测所, 天津 300191;云南农业大学资源与环境学院, 昆明 650201;农业农村部大理农业环境科学观测实验站, 大理 671004,农业农村部环境保护科研监测所, 天津 300191;农业农村部大理农业环境科学观测实验站, 大理 671004,农业农村部环境保护科研监测所, 天津 300191;云南农业大学资源与环境学院, 昆明 650201;农业农村部大理农业环境科学观测实验站, 大理 671004,农业农村部环境保护科研监测所, 天津 300191;农业农村部大理农业环境科学观测实验站, 大理 671004,农业农村部环境保护科研监测所, 天津 300191;云南农业大学资源与环境学院, 昆明 650201;农业农村部大理农业环境科学观测实验站, 大理 671004,农业农村部环境保护科研监测所, 天津 300191;农业农村部大理农业环境科学观测实验站, 大理 671004,农业农村部环境保护科研监测所, 天津 300191;农业农村部大理农业环境科学观测实验站, 大理 671004
基金项目:国家重点研发计划项目(2017YFD0800103);云南省教育厅科研基金产业化项目(2016CYH11);云南省科技创新开放基金(2017HC015)
摘    要:为探寻洱海流域合理的施肥方式,减少氮肥的氨挥发损失,采用"密闭室间歇通气法",研究了不同氮肥类型及施氮量对稻田氨挥发规律、氨挥发累积量及水稻产量的影响,并探究了影响氨挥发排放的因素。研究结果表明:稻田氨挥发主要发生在施肥后2~5 d内,穗肥期氨挥发损失占比最大为19.04%~33.00%,其次分蘖肥期损失为7.18%~15.72%,基肥期损失最少为4.89%~7.76%。不同施肥处理中常规施肥(CF)、化肥减量20%(T1)、单施有机肥(T2)、有机肥与化肥配施(T3)、考虑当季25%矿化率单施有机肥(T4)、考虑当季25%矿化率有机肥与化肥配施(T5)和单施控释肥(T6)的氨挥发累积量分别为42.52、22.73、11.71、15.12、38.24、25.95 kg·hm~(-2)和18.44 kg·hm~(-2)。等量施氮条件下不同肥料类型氨挥发损失占比大小为尿素控释肥有机肥+化肥有机肥。不同施氮量条件下,施氮量越大氨挥发累积量越大,且氨挥发速率与田面水NH4+-N浓度呈正相关性。综合稻田氨挥发累积量及水稻产量,在洱海流域典型农区水稻种植中,有机肥与化肥配施(25%当季矿化率)、化肥减量施用(20%)以及控释肥施用是3种较优的环境友好型施肥方式。

关 键 词:洱海流域  稻田  氮肥类型  氨挥发速率  氨挥发累积量
收稿时间:2018/12/24 0:00:00

Characteristics of ammonia volatilization from rice paddy fields under different fertilization treatments in typical agricultural areas of Erhai basin
WU Fan,ZHANG Ke-qiang,XIE Kun,WANG Feng,WANG Rui-qi,YIN Gao-fei and SHEN Shi-zhou.Characteristics of ammonia volatilization from rice paddy fields under different fertilization treatments in typical agricultural areas of Erhai basin[J].Journal of Agro-Environment Science( J. Agro-Environ. Sci.),2019,38(8):1735-1742.
Authors:WU Fan  ZHANG Ke-qiang  XIE Kun  WANG Feng  WANG Rui-qi  YIN Gao-fei and SHEN Shi-zhou
Institution:Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China;College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China;Dali Agro-Environmental Science Station, Ministry of Agriculture and Rural Affairs, Dali 671004, China,Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China;Dali Agro-Environmental Science Station, Ministry of Agriculture and Rural Affairs, Dali 671004, China,Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China;College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China;Dali Agro-Environmental Science Station, Ministry of Agriculture and Rural Affairs, Dali 671004, China,Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China;Dali Agro-Environmental Science Station, Ministry of Agriculture and Rural Affairs, Dali 671004, China,Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China;College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China;Dali Agro-Environmental Science Station, Ministry of Agriculture and Rural Affairs, Dali 671004, China,Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China;Dali Agro-Environmental Science Station, Ministry of Agriculture and Rural Affairs, Dali 671004, China and Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China;Dali Agro-Environmental Science Station, Ministry of Agriculture and Rural Affairs, Dali 671004, China
Abstract:Ammonia (NH3) volatilization is one of the major ways of nitrogen loss in paddy field. To reduce NH3 volatilization and optimize fertilization scheme for paddy fields in the Erhai basin, effects of fertilizer types, nitrogen application rate and management strategies on NH3 volatilization and rice grain yield were investigated using closed-chamber intermittent ventilation method. Correlation between NH3 volatilization and soil characteristics were also evaluated. Results showed that, maximum NH3 volatilization occurred within 2~5 days after fertilization. Moreover, the NH3 volatilization loss accounted for 19.04%~33.00% at panicle growth stage, about 7.18%~15.72% at tillering stage, and about 4.89%~7.76% at basal stage. The NH3 volatilization accumulations of conventional fertilization (CF), 20% nitrogen reduction (T1), refined organic fertilizers (T2), organic fertilizer and chemical fertilizer (T3), considering 25% mineralization rate of refined organic fertilizers (T4), considering 25% mineralization rate of refined organic fertilizers along with conventional fertilization, refined organic fertilizers + conventional fertilization (T5), and controlled release fertilizer (T6) were 42.52, 22.73, 11.71, 15.12, 38.24, 25.95 kg·hm-2, and 18.44 kg·hm-2, respectively. Under the same amount of nitrogen application, the proportion of NH3 volatilization loss of different fertilizer types was:conventional fertilization > controlled release fertilizer > refined organic fertilizers + conventional fertilization > refined organic fertilizers. Nitrogen application rate in different treatments were directly proportional to the accumulated amount of NH3. In addition, NH3 volatilization rate was positively related to NH4+-N concentration in the surface water. Considering the NH3 volatilization accumulation and rice yield, compared with conventional fertilization, the treatments T1, T5 and T6 are environmentally friendly fertilization methods.
Keywords:Erhai basin  paddy fields  type of nitrogen fertilizer  ammonia volatilization rate  ammonia volatilization accumulation
本文献已被 CNKI 等数据库收录!
点击此处可从《农业环境科学学报》浏览原始摘要信息
点击此处可从《农业环境科学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号