首页 | 本学科首页   官方微博 | 高级检索  
     检索      

Delftia sp.B9对镉胁迫下水稻种子萌发及幼苗镉积累的影响
引用本文:刘玉玲,彭鸥,铁柏清,刘亦婷,罗海艳,李丹阳,刘寿涛.Delftia sp.B9对镉胁迫下水稻种子萌发及幼苗镉积累的影响[J].农业环境科学学报,2019,38(8):1855-1863.
作者姓名:刘玉玲  彭鸥  铁柏清  刘亦婷  罗海艳  李丹阳  刘寿涛
作者单位:湖南农业大学资源环境学院, 长沙 410128;湖南省灌溉水源水质污染净化工程技术研究中心, 长沙 410128;重金属污染耕地安全高效利用湖南省工程研究中心, 长沙 410128,湖南农业大学资源环境学院, 长沙 410128;湖南省灌溉水源水质污染净化工程技术研究中心, 长沙 410128;重金属污染耕地安全高效利用湖南省工程研究中心, 长沙 410128,湖南农业大学资源环境学院, 长沙 410128;湖南省灌溉水源水质污染净化工程技术研究中心, 长沙 410128;重金属污染耕地安全高效利用湖南省工程研究中心, 长沙 410128,湖南农业大学资源环境学院, 长沙 410128,湖南农业大学资源环境学院, 长沙 410128;湖南省灌溉水源水质污染净化工程技术研究中心, 长沙 410128;重金属污染耕地安全高效利用湖南省工程研究中心, 长沙 410128,湖南农业大学资源环境学院, 长沙 410128;湖南省灌溉水源水质污染净化工程技术研究中心, 长沙 410128;重金属污染耕地安全高效利用湖南省工程研究中心, 长沙 410128,湖南农业大学资源环境学院, 长沙 410128;湖南省灌溉水源水质污染净化工程技术研究中心, 长沙 410128;重金属污染耕地安全高效利用湖南省工程研究中心, 长沙 410128
基金项目:国家重点研发计划项目(2017YFD0801505)
摘    要:为探讨耐镉细菌Delftia sp. B9对镉(Cd)胁迫下水稻种子萌发及幼苗吸收积累Cd的影响,以两种水稻(华润2号、深两优5814)为材料,研究水稻在3种Cd胁迫浓度(0、0.01、0.1 mg·L~(-1))下添加Delftia sp. B9菌液对水稻幼苗生长和积累Cd的影响。结果表明:Cd胁迫浓度为0.1 mg·L~(-1)时,Delftia sp. B9产吲哚乙酸(IAA)能力与对照相比显著减少2.87 mg·L~(-1),产铁载体相对含量下降17.34%。Cd胁迫浓度为0.1 mg·L~(-1)时,添加Delftia sp. B9菌液对水稻种子萌发和耐性系数有显著的促进作用。Cd胁迫下添加Delftia sp. B9菌液的处理(T3)与对照(T1)相比能显著增加两种水稻幼苗的根长、株高、叶绿素a和叶绿素b含量。添加Delftia sp.B9显著降低两种水稻幼苗根、茎、叶中Cd含量,使华润2号根、茎、叶中Cd含量分别降低63.81%、67.59%、70.84%,使深两优5814根、茎、叶中Cd含量分别降低75.95%、74.84%、80.81%。研究表明,耐镉细菌Delftia sp. B9可促进Cd胁迫下水稻种子萌发,增加水稻幼苗叶绿素含量和株高,并降低根、茎、叶中Cd含量。

关 键 词:Delftia  sp.B9  Cd胁迫  铁载体  叶绿素
收稿时间:2019/3/11 0:00:00

Effects of Delftia sp. B9 on rice seed germination and cadmium accumulation in rice seedlings under Cd stress
LIU Yu-ling,PENG Ou,TIE Bai-qing,LIU Yi-ting,LUO Hai-yan,LI Dan-yang and LIU Shou-tao.Effects of Delftia sp. B9 on rice seed germination and cadmium accumulation in rice seedlings under Cd stress[J].Journal of Agro-Environment Science( J. Agro-Environ. Sci.),2019,38(8):1855-1863.
Authors:LIU Yu-ling  PENG Ou  TIE Bai-qing  LIU Yi-ting  LUO Hai-yan  LI Dan-yang and LIU Shou-tao
Institution:College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China;Engineering Research Center for Water Pollution Purification of Irrigation Source in Hunan Province, Changsha 410128, China;Hunan Engineering Research Center for Safe and High-Efficient Utilization of Heavy Metal Pollution Farmland, Changsha 410128, China,College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China;Engineering Research Center for Water Pollution Purification of Irrigation Source in Hunan Province, Changsha 410128, China;Hunan Engineering Research Center for Safe and High-Efficient Utilization of Heavy Metal Pollution Farmland, Changsha 410128, China,College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China;Engineering Research Center for Water Pollution Purification of Irrigation Source in Hunan Province, Changsha 410128, China;Hunan Engineering Research Center for Safe and High-Efficient Utilization of Heavy Metal Pollution Farmland, Changsha 410128, China,College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China,College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China;Engineering Research Center for Water Pollution Purification of Irrigation Source in Hunan Province, Changsha 410128, China;Hunan Engineering Research Center for Safe and High-Efficient Utilization of Heavy Metal Pollution Farmland, Changsha 410128, China,College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China;Engineering Research Center for Water Pollution Purification of Irrigation Source in Hunan Province, Changsha 410128, China;Hunan Engineering Research Center for Safe and High-Efficient Utilization of Heavy Metal Pollution Farmland, Changsha 410128, China and College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China;Engineering Research Center for Water Pollution Purification of Irrigation Source in Hunan Province, Changsha 410128, China;Hunan Engineering Research Center for Safe and High-Efficient Utilization of Heavy Metal Pollution Farmland, Changsha 410128, China
Abstract:To explore the effects of Delftia sp. B9 strain on seed germination and Cd accumulation in rice seedlings, three different levels of Cd stress (0, 0.01, and 0.1 mg·L-1) were applied to two rice varieties (Huarun No. 2 and Shenliangyou No. 5814) following inoculation of Delftia sp. B9 strain. The results showed that Delftia sp. B9 produced 2.87 mg·L-1 less indoleacetic acid under 0.1 mg·L-1 Cd stress, whereas the siderophore production decreased by 17.34%, accordingly. The addition of Delftia sp. B9 had a significant role in promoting rice seed germination and tolerance coefficient under 0.1 mg·L-1 Cd stress. Exposure to Delftia sp. B9 stress (T3) significantly increased the root length, height, and chlorophyll a and chlorophyll b content of the two rice varieties compared to that of the control (T1). After the addition of Delftia sp. B9, the Cd concentrations in the roots, stems, and leaves of Huarun No. 2 were decreased by 63.81%, 67.59%, and 70.84%, respectively, and correspondingly decreased by 75.95%, 74.84%, and 80.81% in Shenliangyou No.5814. The results showed that the Cd-tolerant bacteria Delftia sp. B9 promoted germination of rice seed and increase chlorophyll content and plant height of rice seedlings under Cd stress, while reducing Cd content in the roots, stems, and leaves of rice seedlings.
Keywords:Delftia sp  B9  cadmium stress  siderophores  chlorophyll
本文献已被 CNKI 等数据库收录!
点击此处可从《农业环境科学学报》浏览原始摘要信息
点击此处可从《农业环境科学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号