首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Response of Fungal Community and Function to Different Tillage and Straw Returning Methods
Authors:DAI HongCui  ZHANG Hui  XUE YanFang  GAO YingBo  QIAN Xin  ZHAO HaiJun  CHENG Hao  LI ZongXin  LIU KaiChang
Institution:1.Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100;2.Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100;3.National Engineering Laboratory for Wheat and Maize, Jinan 250100;4.College of Agronomy, Qingdao Agricultural University, Qingdao 266109, Shandong
Abstract:【Objective】 This study was conducted to explore the change of fungal community structure and function response to different tillage and straw returning methods in wheat-maize rotation system in the North China Plain. It aimed to clarify the biological mechanism of soil fertility improvement, which provided a theoretical support for sustainable development for agricultural production. 【Method】 A six-year field study with split plot design was conducted to investigate the effects of different soil tillage methods (no tillage, CT; deep tillage, DT; rotation tillage, ST) and straw returning methods (wheat and maize straws were returned to the field, DS; only wheat straw was returned to the field, SS) on changes of fungal community structure and function in soils from wheat-maize rotation system in the North China Plain. In combination with soil properties, multiple regression trees and correlation analysis was carried out to investigate driving factors of fungal community structure and function in soil.【Result】 The results showed that, compared with NT, soil organic carbon content under DS and SS were reduced by 35.04% and 44.30% in 0-10 cm layer, respectively. The available nitrogen of NT under SS treatment was significantly lower than that under other treatments in 10-20 cm layer. Ascomycetes (68.98%), Basidiomycetes (16.96%) and Chytridiomycetes (1.62%) were the dominant fungus in 0-10 cm layer, while Ascomycetes (68.44%), Basidiomycetes (15.52%), Chytridiomycetes (1.51%) and Coccidiomycetes (1.23%) were the dominant fungus in 10-20 cm layer. The different tillage and straw returning methods changed soil fungal community structure. Specifically, the relative abundance of Basidiomycota in DS increased 50.07% and 29.08% respectively in 0-10 cm and 10-20 cm layers than that of SS. The multiple regression trees showed that soil fungal communities were divided into soil organic carbon nodes with a threshold of 11.17 mg·kg -1 in 0-10 cm layer, additionally, the soil fungi community were divided into available nitrogen nodes with a threshold of 6.52 mg·kg -1 in 10-20 cm layer. In this study, Pathotroph was mainly function type of soil fungi in 0-10 cm (26.84%) and 10-20 cm (23.91%) layers in wheat-maize rotation in the North China Plain. Compared with NT, Pathotroph relative abundance under DT and RT treatments were reduced by 25.16% and 16.45%, respectively. The results of correlation analysis showed that Pathotroph relative abundance were positively correlated with soil total organic carbon, dissolved organic carbon, total nitrogen, available nitrogen and available potassium. 【Conclusion】 In general, our results indicated that different tillage and straw returning methods changed soil fungal community structure and relative abundance of functional groups. The content of soil organic carbon and available nitrogen were the driving factors shaped the fungal community structure. Besides, DT could reduce Pathotroph relative abundance, which was conducive to maintaining the soil ecosystem health.
Keywords:tillage practice  straw returning  soil fungal community  high-throughput sequencing  multiple regression trees  
点击此处可从《中国农业科学》浏览原始摘要信息
点击此处可从《中国农业科学》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号