首页 | 本学科首页   官方微博 | 高级检索  
     检索      

NaCl盐胁迫对两种刺槐叶肉细胞超微结构的影响
引用本文:孟凡娟,王建中,黄凤兰,王彦杰.NaCl盐胁迫对两种刺槐叶肉细胞超微结构的影响[J].北京林业大学学报,2010,32(4):97-102.
作者姓名:孟凡娟  王建中  黄凤兰  王彦杰
作者单位:1 东北林业大学生命科学学院 2 北京林业大学生物科学与技术学院 3 内蒙古民族大学生命科学学院 4 中国科学院成都生物研究所
基金项目:国家自然科学基金项目(30901142); 黑龙江省博士后启动基金; 中央高校基本科研业务费专项资金项目(DL09BA33)
摘    要:以四倍体刺槐为主要研究材料、二倍体刺槐为对照材料,观察二者在NaCl胁迫下叶肉细胞的超微结构变化特点。结果表明:1)在盐胁迫处理前,二者的叶绿体均表现为结构完整。处理10d时,二倍体刺槐的叶绿体出现变形、膜模糊、基粒片层松散;处理20d时,叶绿体进一步肿胀、变形,膜系统全部解体。对四倍体刺槐进行同时期的观察发现:处理10和20d时,其叶绿体形态与二倍体刺槐的相比差异不大。2)盐胁迫处理前,二者叶片的线粒体形态饱满,结构完整。处理10d,二倍体刺槐的线粒体膜模糊,失去完整性,内部出现部分空洞,嵴结构模糊;盐胁迫20d时,二倍体刺槐的线粒体膜结构几乎全部失去完整性,与周围介质相融,无结构清晰的嵴,线粒体内部绝大部分出现空洞。而四倍体刺槐叶肉的线粒体在盐胁迫过程中与处理前相比变化不大。3)处理前,二者的叶肉细胞均表现为排列疏松,结构完整,叶绿体分布于细胞边缘。处理10d时,二倍体刺槐的部分叶绿体位于细胞中央;盐胁迫20d时,绝大部分叶绿体进入细胞内部,游离细胞壁,呈随机分布,且细胞膜部分破损,变得模糊。而四倍体刺槐叶肉细胞的超微结构在盐胁迫过程中变化不大。以上结果可以看出,四倍体刺槐具有与耐盐性相适应的解剖结构特点。

关 键 词:四倍体刺槐    二倍体刺槐    NaCl  盐胁迫    超微结构
收稿时间:1900-01-01

Ultrastructure of mesophyll cells in two Robinia pseudoacacia hybrids under NaCl stress
MENG Fan-juan,WANG Jian-zhong,HUANG Feng-lan,WANG Yan-jie.Ultrastructure of mesophyll cells in two Robinia pseudoacacia hybrids under NaCl stress[J].Journal of Beijing Forestry University,2010,32(4):97-102.
Authors:MENG Fan-juan  WANG Jian-zhong  HUANG Feng-lan  WANG Yan-jie
Institution:1 College of Life Science, Northeast Forestry University, Harbin, 150040, P. R. China; 2 College of Biological Science and Biotechnology, Beijing Forestry University, 100083, P. R. China; 3 College of Life Science, Inner Mongolia University for Nationalities, Tongliao, 028000, P. R. China; 4 Chengdu Institute of Biology,Chinese Academy of Sciences, 600041, P. R. China.
Abstract:The ultrastructural changes of mesophyll cells in two Robinia pseudoacacia hybrids, i.e. tetraploid R. pseudoacacia and diploid R. pseudoacacia, were observed under NaCl stress. The results showed that: 1) before salt stress, the chloroplasts of two R. pseudoacacia were morphologically integrated. After 10 days of stress, the chloroplast of diploid R. pseudoacacia began deformed, with ambiguity in membrane and disorganization in grana lamell. After 20 days, the chloroplast showed further swelling and disarrangement, with a clear degradation of membrane. For tetraploid R. pseudoacacia, the structure of chloroplast changed little after 10 and 20 days of stress; 2) Before salt stress, the mitochondria of two R. pseudoacacia were morphologically integrated. After 10 days of stress, the cavitas and ambiguous crista were observed in the mitochondria of diploid R.pseudoacacia, which appeared ambiguity in membrane and lost integrity. After 20 days, most of mitochondria lost complete membrane and showed compatible with cytoplasm; no clear cristae but many cavitas were observed. The mitochondria of tetraploid R. pseudoacacia changed little with salt stress; 3) Before salt stress, the mesophyll cell of two R. pseudoacacia showed loose arrangement and complete structure. The chloroplast distributed at the margin of the cell wall. After 10 days, parts of chloroplast in diploid R. pseudoacacia moved to the middle of cell. After 20 days, most of chloroplast located in the middle of cell and showed random distribution; cell membrane degraded partly and became ambiguity. The shape of mesophyll cell of tetraploid R. pseudoacacia changed little under salt stress. The above results indicate that tetraploid R. pseudoacacia has anatomic adaptation to the salt stress.
Keywords:tetraploid Robinia pseudoacacia  diploid Robinia pseudoacacia  NaCl stress  ultrastructure
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《北京林业大学学报》浏览原始摘要信息
点击此处可从《北京林业大学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号