首页 | 本学科首页   官方微博 | 高级检索  
     检索      

褐菖鲉和松江鲈侧线形态的比较
引用本文:韦璐,宋佳坤,潘连德,张旭光,王晓杰,范纯新,郭弘艺.褐菖鲉和松江鲈侧线形态的比较[J].上海海洋大学学报,2014,23(6):801-809.
作者姓名:韦璐  宋佳坤  潘连德  张旭光  王晓杰  范纯新  郭弘艺
作者单位:上海海洋大学水产与生命学院;上海海洋大学省部共建水产种质资源发掘与利用教育部重点实验室;上海海洋大学国际海洋研究中心;上海海洋大学海洋生物系统与神经科学研究所,上海海洋大学水产与生命学院,上海海洋大学水产与生命学院,上海海洋大学水产与生命学院,上海海洋大学水产与生命学院,上海海洋大学水产与生命学院,上海海洋大学水产与生命学院
基金项目:国家重点基础研究发展计划(2011CB111608);上海高校水产学一流学科建设项目资助(A2-2019-14-0001-4);上海海洋大学国际海洋中心(A1-0209-13-0802)
摘    要:鱼类的侧线类型是由分类地位还是由环境的适应而定是进化形态学的关键问题之一。通过光镜和扫描电镜,首次描述和比较了同属鲉形目的褐菖鲉和松江鲈的侧线形态及其分布。研究结果显示,两种研究对象的侧线都仅具机械感觉系统,包括管道侧线和表面神经丘,但它们的形态及分布有差异。褐菖鲉头部管道属分枝型;松江鲈属简单型管道,比褐菖鲉有更多的表面神经丘。这两种鱼都属以管道为主,表面神经丘为辅助来感知水流动态的类型,但是,栖息在急流的褐菖鲉具有分枝型管道侧线和较少的表面神经丘分布;生活在缓流的松江鲈有简单型管道侧线和较多的表面神经丘分布,表明这些侧线的形态特征与不同栖息地水流环境关系密切。本文认为,分类地位接近的褐菖鲉和松江鲈侧线系统的形态区别,是其在进化过程中对不同栖息地水流特征的适应而形成。

关 键 词:褐菖鲉  松江鲈  侧线系统  显微结构  亚显微结构  适应性进化
收稿时间:2014/5/15 0:00:00
修稿时间:2014/5/23 0:00:00

A comparative study on the lateral line morphology of Sebastiscus marmoratus and Trachidermus fasciatus
WEI Lu,SONG Jia-kun,PAN Lian-de,ZHANG Xu-guang,WANG Xiao-jie,FAN Chun-xin and GUO Hong-yi.A comparative study on the lateral line morphology of Sebastiscus marmoratus and Trachidermus fasciatus[J].Journal of Shanghai Ocean University,2014,23(6):801-809.
Authors:WEI Lu  SONG Jia-kun  PAN Lian-de  ZHANG Xu-guang  WANG Xiao-jie  FAN Chun-xin and GUO Hong-yi
Institution:College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China;Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai 201306, China;International Center of Marine Study, Shanghai Ocean University, Shanghai 201306, China;Institute for Marine Biosystem and Neurosciences, Shanghai Ocean University, Shanghai 201306, China;College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China;Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai 201306, China;International Center of Marine Study, Shanghai Ocean University, Shanghai 201306, China;Institute for Marine Biosystem and Neurosciences, Shanghai Ocean University, Shanghai 201306, China;College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China;Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai 201306, China;College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China;Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai 201306, China;International Center of Marine Study, Shanghai Ocean University, Shanghai 201306, China;Institute for Marine Biosystem and Neurosciences, Shanghai Ocean University, Shanghai 201306, China;College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China;Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai 201306, China;International Center of Marine Study, Shanghai Ocean University, Shanghai 201306, China;Institute for Marine Biosystem and Neurosciences, Shanghai Ocean University, Shanghai 201306, China;College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China;Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai 201306, China;International Center of Marine Study, Shanghai Ocean University, Shanghai 201306, China;Institute for Marine Biosystem and Neurosciences, Shanghai Ocean University, Shanghai 201306, China;College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China;Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai 201306, China;International Center of Marine Study, Shanghai Ocean University, Shanghai 201306, China;Institute for Marine Biosystem and Neurosciences, Shanghai Ocean University, Shanghai 201306, China
Abstract:By using light and scanning electron microscopy, we compared the morphology and distribution patterns in two species of Scorpaeniformes: False-kelpfish(Sebastiscus marmoratus) and Roughskin sculpin (Trachidermus fasciatus). The mechanosensory lateral line system of S. marmoratus and T. fasciatus are composed of canals and superficial neuromasts. The S. marmoratus, which lives in turbulent fast flowing habitats, has a developed branching canal system and fewer superficial neuromasts. In contrast, the T. fasciatus which resides in slow flowing habitats, has a simple unbranched canal system and more superficial neuromasts. Our results show that both of the patterns mainly depend on using canal lateral line system to perceive water motion with compensate of the superficial neuromasts for sensation of accurate information from the surrounding water movement. The differences of morphological patterns of the lateral line system in two systematically close related species that reflects that adaptation to the habitat hydrodynamic environment play an important role in evolution process of morphological character formation in fish.
Keywords:Scorpaeniforms  fish  comparative  morphology  lateral  line system
本文献已被 CNKI 维普 等数据库收录!
点击此处可从《上海海洋大学学报》浏览原始摘要信息
点击此处可从《上海海洋大学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号