首页 | 本学科首页   官方微博 | 高级检索  
     检索      

基于SCoT标记的朱顶红品种遗传多样性分析
引用本文:王黎,徐郝,俞云栋,张海珍,高燕会,沈笑,金晨莺,陈轶敏.基于SCoT标记的朱顶红品种遗传多样性分析[J].浙江农林大学学报,2020,37(5):930-938.
作者姓名:王黎  徐郝  俞云栋  张海珍  高燕会  沈笑  金晨莺  陈轶敏
作者单位:1.浙江农林大学 省部共建亚热带森林培育国家重点实验室,浙江 杭州 3113002.杭州植物园,浙江 杭州 3100273.杭州西湖风景名胜区湖滨管理处,浙江 杭州 310002
基金项目:杭州西湖风景名胜区科技发展计划项目(2016-006);“十三五”浙江省育种专项(2016C02056-13)
摘    要:  目的  进一步从分子水平分析朱顶红Hippeastrum rutilum品种间的遗传多样性、亲缘关系和亲本鉴定。  方法  利用正交试验设计方法筛选朱顶红目标起始密码子多态性分子标记(SCoT)体系,并以41份朱顶红品种为材料对遗传多样性和亲缘关系进行分析。  结果  ①朱顶红SCoT标记最佳反应体系(20 μL):包括DNA 40 ng,引物 0.1 μmol·L?1;MgCl2 2.0 mmol·L?1,dNTPs 0.4 mmol·L?1和rTaq DNA聚合酶0.75 U (1 U=16.67 nkat)。② 12条SCoT引物从41份朱顶红品种获得77条多态性条带,平均多态性比率高达86.52%。朱顶红品种间遗传相似系数为0.292 3~0.834 3,表明41份朱顶红品种间遗传多样性较高,遗传范围广。③非加权配对算术平均法(UPGMA)聚类表明:朱顶红SCoT标记聚类与花色的相关性较大,但与瓣型相关性不大。在遗传相似系数0.420 0处将41份朱顶红品种分为两大类:第Ⅰ大类既有重瓣品种又有单瓣品种,第Ⅰ大类又分为4个小类,其中相似花色的聚为一类,Ⅰd小类中单瓣、白色的‘绣球’‘Hydrangea’(20号)和红色的‘奇迹’‘Miracle’(22号)可能是重瓣、橙红和白色组成的复色花(21号‘迎春’‘Yingchun’)的亲本;第Ⅱ大类品种多为复色花。  结论  SCoT标记技术可有效地应用于朱顶红品种间遗传多样性分析和可能亲本的鉴定。图6表4参21

关 键 词:植物育种    朱顶红    SCoT标记    遗传多样性    亲本鉴定
收稿时间:2019-10-19

Genetic diversity analysis of Hippeastrum rutilum cultivars based on SCoT markers
WANG Li,XU Hao,YU Yundong,ZHANG Haizhen,GAO Yanhui,SHEN Xiao,JIN Chenying,CHEN Yimin.Genetic diversity analysis of Hippeastrum rutilum cultivars based on SCoT markers[J].Journal of Zhejiang A&F University,2020,37(5):930-938.
Authors:WANG Li  XU Hao  YU Yundong  ZHANG Haizhen  GAO Yanhui  SHEN Xiao  JIN Chenying  CHEN Yimin
Institution:1.State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China2.Hangzhou Botanical Garden, Hangzhou 310027, Zhejiang, China3.Hubin Management Office in Hangzhou West Lake Scenic Spot , Hangzhou 310002, Zhejiang, China
Abstract:  Objective  The objective of this study is to further analyze the genetic diversity, genetic relationship and parental identification of Hippeastrum rutilum cultivars at molecular level.  Method  The SCoT marker system of H. rutilum was screened by orthogonal design method, and genetic diversity and genetic relationship of 41 cultivars were analyzed.  Result  (1) The optimum reaction system of SCoT markers for H. rutilum (20 μL) included DNA 40 ng, primer 0.1 μmol·L?1, MgCl2 2.0 mmol·L?1, dNTPs 0.4 mmol·L?1 and rTaq DNA polymerase 0.75 U (1 U=16.67 nkat). (2) 77 polymorphic bands were obtained from 41 H. rutilum cultivars by 12 SCoT primers, and the average polymorphic band ratio was up to 86.52%. The genetic similarity coefficient between H. rutilum cultivars was 0.292 3?0.834 3, indicating that the 41 cultivars had high genetic diversity and wide genetic range. (3)UPGMA(unweighted pair-group method with arithmetic means) cluster analysis showed that the SCoT marker clustering of H. rutilum had significant correlation with flower color, but not with the petal type. At genetic similarity coefficient of 0.420 0, the 41 cultivars were divided into two groups. The first group had both double and single petal cultivars. The first group was divided into four subgroups, among which those with similar flower colors were clustered into one group. In subgroupⅠd, the single-petal, white ‘Hydrangea’ (No. 20) and red ‘Miracle’ (No. 22) were the possible parents of double-petal, orange-red and white multicolor flowers (No. 21 ‘Yingchun’). The second group was mostly multicolor flowers.  Conclusion  SCoT marker technique can be effectively applied to genetic diversity analysis and identification of possible parents of H. rutilum cultivars. Ch, 6 fig. 4 tab. 21 ref.]
Keywords:
本文献已被 CNKI 等数据库收录!
点击此处可从《浙江农林大学学报》浏览原始摘要信息
点击此处可从《浙江农林大学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号