首页 | 本学科首页   官方微博 | 高级检索  
     检索      

17β-Estradiol Regulates SKP2 Expression in Cultured Immature Boar Sertoli Cells Mainly via Estrogen Receptor β, cAMP-PKA and ERK1/2
作者姓名:WANG  Xian-zhong ZHU  Feng-wei WANG  Yong WANG  Yi ZHANG  Jiao-jiao ZHANG  Jia-hua
作者单位:Chongqing Key Laboratory of Forage & Herbivore, College of Animal Science and Technology, Southwest University, Chongqing 400716,P.R.China
摘    要:Estrogen plays an important role in regulating testicular Sertoli cell number. Furthermore, S-phase kinase-associated protein 2 (SKP2) plays a central role in mammalian cell cycle progression. The objective of this study was to determine whether 17β-estradiol can regulate the expression of SKP2, and the Sertoli cell cycle, via estrogen receptor β (ERβ), the cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) and extracellular signal-regulated kinase (ERK1/2) pathway. When cultured immature boar Sertoli cells were treated with 17β-estradiol, a time-dependent increase in SKP2 mRNA and protein level was observed by real-time PCR and Western blot, and 17β-estradiol activity peaked at 30 min. Treatment with ICI182780 and ERβ antagonist reduced 17β-estradiol-induced expression of SKP2 and proliferating cell nuclear antigen (PCNA), while increasing the protein concentration of p27kip1. However, the effect of ERa antagonist on these parameters was lower than that of ICI 182780 and ERβ. Forskolin had a similar effect as 17β-estradiol on the expression of SKP2, PCNA and p27kip1, Rp-cAMP, H-89 and U0126 treatment reduced 17β-estradiol-induced changes, while H-89 also inhibited ERK1/2 activation. Therefore, 17β-estradiol mainly regulates SKP2 mRNA and protein expression via ERβ-cAMP-PKA and ERK1/2 activation. SKP2 and PCNA expression were positively correlated, while increased SKP2 expression likely resulted in p27kip1 degradation.

关 键 词:cAMP-PKA  睾丸支持细胞  雌激素受体  SKP2  雌二醇  细胞外信号调节激酶  成熟  培养
收稿时间:5 December 2012

17β-Estradiol Regulates SKP2 Expression in Cultured Immature Boar Sertoli Cells Mainly via Estrogen Receptor β, cAMP-PKA and ERK1/2
WANG,Xian-zhong ZHU,Feng-wei WANG,Yong WANG,Yi ZHANG,Jiao-jiao ZHANG,Jia-hua.17β-Estradiol Regulates SKP2 Expression in Cultured Immature Boar Sertoli Cells Mainly via Estrogen Receptor β, cAMP-PKA and ERK1/2[J].Journal of Integrative Agriculture,2014,13(4):827-836.
Institution:Chongqing Key Laboratory of Forage & Herbivore, College of Animal Science and Technology, Southwest University, Chongqing 400716, P.R.China
Abstract:Estrogen plays an important role in regulating testicular Sertoli cell number. Furthermore, S-phase kinase-associated protein 2 (SKP2) plays a central role in mammalian cell cycle progression. The objective of this study was to determine whether 17β-estradiol can regulate the expression of SKP2, and the Sertoli cell cycle, via estrogen receptor β (ERβ), the cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) and extracellular signal-regulated kinase (ERK1/2) pathway. When cultured immature boar Sertoli cells were treated with 17β-estradiol, a time-dependent increase in SKP2 mRNA and protein level was observed by real-time PCR and Western blot, and 17β-estradiol activity peaked at 30 min. Treatment with ICI182780 and ERβ antagonist reduced 17β-estradiol-induced expression of SKP2 and proliferating cell nuclear antigen (PCNA), while increasing the protein concentration of p27kip1. However, the effect of ERα antagonist on these parameters was lower than that of ICI182780 and ERβ. Forskolin had a similar effect as 17β-estradiol on the expression of SKP2, PCNA and p27kip1. Rp-cAMP, H-89 and U0126 treatment reduced 17β-estradiol-induced changes, while H-89 also inhibited ERK1/2 activation. Therefore, 17β-estradiol mainly regulates SKP2 mRNA and protein expression via ERβ-cAMP-PKA and ERK1/2 activation. SKP2 and PCNA expression were positively correlated, while increased SKP2 expression likely resulted in p27kip1 degradation.
Keywords:17β-estradiol  Sertoli cell  SKP2  estrogen receptor  cAMP-PKA  ERK1/2
本文献已被 维普 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号