首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Iron and zinc grain density in common wheat grown in Central Asia
Authors:Alexei Morgounov  Hugo Ferney Gómez-Becerra  Aigul Abugalieva  Mira Dzhunusova  M Yessimbekova  Hafiz Muminjanov  Yu Zelenskiy  Levent Ozturk  Ismail Cakmak
Institution:(1) CIMMYT Regional Office for Central Asia and Caucasus, Almaty, Kazakhstan;(2) Kazakh Research and Production Center of Farming and Crop Science, Street Erlepesova 2, Almalibak, Karasaisky Rayon, Almatinskaya Oblast, 040909, Kazakhstan;(3) Kazakhstan-Siberia Network for Spring Wheat Improvement (KASIB), Astana, Kazakhstan;(4) MIS Seed Company, Kant, Kyrgyzstan;(5) Tajik Agricultural University, Dushanbe, Tajikistan;(6) Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
Abstract:Sixty-six spring and winter common wheat genotypes from Central Asian breeding programs were evaluated for grain concentrations of iron (Fe) and zinc (Zn). Iron showed large variation among genotypes, ranging from 25 mg kg−1 to 56 mg kg−1 (mean 38 mg kg−1). Similarly, Zn concentration varied among genotypes, ranging between 20 mg kg−1 and 39 mg kg−1 (mean 28 mg kg−1). Spring wheat cultivars possessed higher Fe-grain concentrations than winter wheats. By contrast, winter wheats showed higher Zn-grain concentrations than spring genotypes. Within spring wheat, a strongly significant positive correlation was found between Fe and Zn. Grain protein content was also significantly (P < 0.001) correlated with grain Zn and Fe content. There were strong significantly negative correlations between Fe and plant height, and Fe and glutenin content. Similar correlation coefficients were found for Zn. In winter wheat, significant positive correlations were found between Fe and Zn, and between Zn and sulfur (S). Manganese (Mn) and phosphorus (P) were negatively correlated with both Fe and Zn. The additive main effects and multiplicative interactions (AMMI) analysis of genotype × environment interactions for grain Fe and Zn concentrations showed that genotype effects largely controlled Fe concentration, whereas Zn concentration was almost totally dependent on location effects. Spring wheat genotypes Lutescens 574, and Eritrospermum 78; and winter wheat genotypes Navruz, NA160/HEINEVII/BUC/3/F59.71//GHK, Tacika, DUCULA//VEE/MYNA, and JUP/4/CLLF/3/II14.53/ODIN//CI13431/WA00477, are promising materials for increasing Fe and Zn concentrations in the grain, as well as enhancing the concentration of promoters of Zn bioavailability, such as S-containing amino acids.
Keywords:Breeding  Central Asia  G × E  Iron  Wheat  Zinc
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号