首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Grain yield of wheat (Triticum aestivum L.) under long‐term heat stress is sink‐limited with stronger inhibition of kernel setting than grain filling
Authors:Birgit W Hütsch  Dana Jahn  Sven Schubert
Abstract:The aim of the study was to investigate source‐sink relations of wheat under continuous heat stress and to identify bottle necks of yield formation. A pot experiment was conducted in two climatic chambers exposing wheat plants (Triticum aestivum L. cv. Thasos) either to day/night temperatures of 20/20°C (control conditions) or of 30/25°C (heat stress) during the whole vegetation period in the absence of plant water deficit. Plants were harvested at four phenological stages: three‐node stage (DC 33), start of flowering (DC 61), grain filling (DC 75) and maturity (DC 94). Heat stress shortened the development phases of the plants and caused a significant decrease in total above‐ground biomass between 19% and 41%. At grain filling and at maturity, the reductions in total shoot biomass mainly resulted from grain yield depressions by 77% and 58%, respectively. The ear number per plant was significantly higher under heat stress in comparison with the control, at maturity it was more than doubled. On the contrary, under heat stress, the kernel number per ear was strongly decreased by 83% and 75% during grain filling and at maturity, respectively. The decrease in individual kernel weight was 23% at maturity. Thus, the heat‐stressed plants were able to strongly increase the number of ear‐bearing tillers which were able to set only a small number of kernels, yet these kernels showed good grain filling. The harvest index (HI) of heat‐stressed plants was significantly reduced by 36% (control: HI = 50.1% ± 0.4, heat: HI = 32.2% ± 0.9***). The plants in the stress treatment adapted to the adverse conditions by less biomass production which presumably allowed a higher transpiration without an increase in total water consumption. Nevertheless, under heat stress, the water use efficiency (WUEgrain) was strongly decreased by 62% as a result of a small grain yield. In ears and grains, the sucrose, glucose and fructose concentrations were not significantly different between control and heat stress at start of flowering and during grain filling. Thus, the supply of assimilates was not restricted (no source limitation). Sink capacity was reduced by heat stress, as lesser and smaller kernels were produced than in the control. Concerning sink activity, the sink‐limiting step during kernel set is probably the active transport of hexoses across the plasma membrane into the developing kernels, which could also affect grain filling. This needs to be investigated in more detail in further studies.
Keywords:assimilate partitioning  phenological stages  sugar concentrations  tillering  water consumption
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号