首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Oxidation of methane in the rhizosphere of rice plants
Authors:H A C Denier van der Gon  H -U Neue
Institution:(1) Department of Soil Science and Geology, Agricultural University Wageningen, P.O. Box 37, 6700 AA Wageningen, The Netherlands;(2) Department of Soil and Water Sciences, International Rice Research Institute, Los Banos, The Philippines
Abstract:Oxidation of CH4 in the rhizosphere of rice plants was quantified using (1) methyl fluoride, a specific inhibitor of CH4 oxidation, and (2) measuring changes in plant-mediated CH4 emission after incubation under air, N2, or 40% O2. No significant rhizospheric CH4 oxidation was observed from rice plants in the ripening stage. CH4 emission from rice plants 1 week before panicle initiation increased by 40% if CH4 oxidation in the rhizosphere was blocked. The growth stage of the rice plant is an important factor determining the rhizospheric CH4 oxidation. Fluctuation of rhizospheric CH4 oxidation during the growing season may help to explain the observed seasonal CH4 emission patterns in field studies. Measurements from four rice varieties showed that one variety, Pokkali, had higher rhizospheric CH4 oxidation. This was probably because Pokkali was in an earlier growth stage than the other three varieties. Both in the early and in the late growth stages, incubation under N2 caused a much stronger CH4 flux than inhibition of CH4 oxidation alone. Apparently, N2 incubation not only blocked CH4 oxidation but also stimulated methanogenesis in the rhizosphere. Incubation under a higher O2 atmosphere (40% O2) than ambient air decreased the CH4 flux, suggesting that increasing the oxidation of the rice rhizosphere may help in reducing CH4 fluxes from rice agriculture. The O2 pressure in the rhizosphere is an important factor that reduces the plant-mediated CH4 flux. However, inhibition of methanogenesis in the rhizosphere may contribute more to CH4 flux reduction than rhizospheric CH4 oxidation.
Keywords:Methane emission  Methane oxidation  Methyl fluoride  Plant-mediated gas transport  Rice
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号