首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Glyphosate Dissipation in Different Soils Under No-Till and Conventional Tillage
Authors:Elena OKADA  José Luis COSTA  Francisco BEDMAR
Institution:1Consejo Nacional de Investigaciones Científicas y Técnicas(CONICET), Balcarce 7620(Argentina) 2Estación Experimental Agropecuaria Balcarce, Instituto Nacional de Tecnología Agropecuaria(INTA), Balcarce 7620(Argentina) 3Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, Balcarce 7620(Argentina)
Abstract:Glyphosate is the most used herbicide in Argentina, accounting for 62% of the commercialized pesticides on the market. It is used as a weed controller in no-till systems, and it is also applied to various genetically modified crops (e.g., soybean, corn, and cotton). Although it has a high solubility in water, it tends to adsorb and accumulate in agricultural soils. The main objectives of this work were to compare the dissipation of glyphosate and the accumulation of its metabolite aminomethylphosphonic acid (AMPA) over time in three soils from agricultural areas of Argentina under long-term management with no-till (NT) and conventional tillage (CT) practices. There were no differences in dissipation between NT and CT, indicating that the glyphosate-degrading microflora was not modified by the different tillage managements. Moreover, tillage practices did not alter the general soil properties; therefore, glyphosate bioavailability was not affected by NT or CT practice. Forty percent of the applied glyphosate was degraded within the first three days in all soils, indicating a fast initial dissipation rate. However, the dissipation rate considerably decreased over time, and the degradation kinetics followed a bi-exponential (or two-compartment) kinetic model. No differences were found between tillage practices. Dissipation was not related to the microbial activity measured as soil respiration. The fast decrease in the concentration of glyphosate at the beginning of the dissipation study was not reflected in an increase in the concentration of AMPA. The estimated half-lives for glyphosate ranged between 9 and 38 d. However, glyphosate bioavailability decreases over time, as it is strongly adsorbed to the soil matrix. This increases its residence time, which may lead to its accumulation in agricultural soils.
Keywords:aminomethylphosphonic acid  bioavailability  biodegradation  herbicide  metabolite  pesticide  two-compartment kinetic model
本文献已被 CNKI ScienceDirect 等数据库收录!
点击此处可从《土壤圈》浏览原始摘要信息
点击此处可从《土壤圈》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号