首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Surface mulching and a sandy soil interlayer suppress upward enrichment of salt ions in salt-contaminated field
Authors:Wang  Jianyong  Liu  Huiming  Wang  Shaoming  Liu  Yingxia  Cheng  Zhengguo  Fu  Guangqiang  Mo  Fei  Xiong  Youcai
Institution:1.State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
;2.Institute of Grassland Science/School of Life Sciences, Northeast Normal University, and Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, 130024, Jilin, China
;3.Ecological Remote Sensing Department, Satellite Environment Center, Ministry of Environmental Protection of China, Beijing, 100094, China
;4.College of Life Sciences, Shihezi University, Shihezi, 832003, Xinjiang, China
;
Abstract:Purpose

The suppression effect of a sandy soil interlayer on topsoil enrichment of salt ions was investigated. However, whether this suppression effect was enhanced by surface mulching was little documented. The objectives of this study were to compare the suppression effects under different materials mulching, and to investigate an innovative method to suppress the soil salt ions down-to-top enrichment.

Materials and methods

In this study, the sandy soil layer was pre-positioned at 60–100 cm depth in a salt-contaminated site in advance, achieving the suppression effect on surface enrichment of salt components as expected. Three treatments were herein designed as bare field (CK), plastic film mulching (PM), and maize straw mulching (SM) to examine the dynamics of water and salt movement across soil profiles during the summer with strong evaporation.

Results and discussions

Results showed that total salt content was increased by 21.3 and 8.0% in CK and SM respectively, while decreased by 24.9% in PM at the end of strong evaporation period, comparing with the beginning. Thus, surface mulching further strengthened this suppression effect, but PM displayed better performance than SM did. The data also demonstrated that vertical transport of soil water was much restrained in PM and SM, accordingly inhibiting upward transfer of salt ions. Particularly, sodium adsorption ratio (SAR) ranged from 14.3–265.7, 17.9–147.1, 38.4–147.2 mmol1/2 kg?1/2 at a shallow soil layer (0–60 cm) in CK, PM, and SM, respectively.

Conclusions

The results suggested that sandy soil interlayer settings with plastic mulching are a critical technical strategy for salt-contaminated land reutilization and management.

Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号