首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Amendment of sulfate with Se into soils further reduces methylmercury accumulation in rice
Authors:Yongjie Wang  Zhongbo Wei  Qilong Zeng  Huan Zhong
Institution:1.State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment,Nanjing University,Nanjing,People’s Republic of China;2.Institute of Botany,Jiangsu Province and Chinese Academy of Sciences,Nanjing,People’s Republic of China;3.Environmental and Life Sciences Program (EnLS),Trent University,Peterborough,Canada
Abstract:

Purpose

Both selenium (Se) and sulfate could largely affect methylmercury (MeHg) dynamics and phytoavailability in soil-rice systems, while their combined effects are less understood. Here, we aimed at exploring the potential effects of sulfate on MeHg accumulation in rice in the presence of Se.

Materials and methods

Rice was cultivated in inorganic Hg-spiked soils amended with Se only (selenite/selenate, “Se treatments”) or Se and sulfate (“Se?+?Sulfate treatments”). Soil parameters (e.g., pH and redox potential (Eh)), MeHg concentrations in soils, as well as MeHg or Se accumulation in rice plants were quantified during the rice growth period.

Results and discussion

Soil MeHg concentrations were generally comparable between Se?+?Sulfate and Se treatments. However, MeHg uptake by rice plants in Se?+?Sulfate treatments was 9–31 % lower than those in Se treatments, possibly due to the increased soil pH and formation of iron sulfides, which may reduce MeHg phytoavailability under sulfate amendment. Furthermore, sulfate input enhanced Se accumulation in root (especially in the presence of selenate), which could be responsible for the increased MeHg distribution in root and thus lower MeHg distribution in grain. Consequently, the reduced plant uptake of MeHg together with the decreased MeHg distribution in grain resulted in decline of grain MeHg concentrations in Se?+?Sulfate treatments (8–31 % lower compared to Se treatments).

Conclusions

Our results suggest that sulfate input with Se could further reduce MeHg accumulation in rice, which improved mechanistic understanding of MeHg behaviors in soil-rice systems.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号