首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Fractions of Cu, Cd, and enzyme activities in a contaminated soil as affected by applications of micro- and nanohydroxyapatite
Authors:Hongbiao Cui  Jing Zhou  Qiguo Zhao  Youbin Si  Jingdong Mao  Guodong Fang  Jiani Liang
Institution:1. Institute of Soil Science, Chinese Academy of Sciences, 71st East Beijing Road, Nanjing, 210008, People’s Republic of China
2. National Engineering Research and Technology Center for Red Soil Improvement, Red Soil Ecological Experiment Station, Chinese Academy of Sciences, Yingtan, 335211, People’s Republic of China
3. School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, People’s Republic of China
4. Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA, 23529, USA
Abstract:

Purpose

With the rapid development of nanotechnology, hydroxyapatite-based nanoparticles have been applied in wastewater and soil remediation. However, limited studies have been conducted on the remediation of heavy metal-contaminated soils by microhydroxyapatite (MHA) and nanohydroxyapatite (NHA). Thus, we investigated the effects of MHA and NHA on soil pH values and fractions of copper (Cu) and cadmium (Cd). The changes of soil enzymes with application of MHA and NHA were also evaluated.

Materials and methods

Pots contained 200 g of the soil with MHA and NHA ranging from 1 % to 5 % incubated for 60 days under greenhouse condition, and maintained at 60 % of soil water holding capacity by adding deionized water. Soil pH, catalase, urease, and acid phosphatase were analyzed at incubation times of 7, 14, 30, and 60 days by chemical assays. The fractions of Cu and Cd were analyzed after 60 days by a sequential extraction procedure.

Results and discussion

Application of MHA and NHA significantly increased soil pH values. Especially, we found for the first time that soil pH values with 3 % (pH?>?7.90) and 5 % (pH?>?8.83) application rates of MHA were larger than that of MHA itself (pH?=?7.71). MHA was more effective than NHA in immobilizing Cu and Cd by significantly decreasing exchangeable fractions of Cu and Cd and transforming them from active to inactive fractions. Soil catalase and urease significantly increased, but acid phosphatase apparently decreased with increasing application rates of MHA. However, three enzymes activities changed slightly for NHA treatments.

Conclusions

MHA was more effective than NHA in immobilizing Cu and Cd. MHA had a more positive effect on soil catalase and urease activities than NHA. Furthermore, Pearson’s correlation coefficients showed that soil pH value was a key factor to influence the bioavailability of Cu and Cd and the activity of soil enzymes. The results of this study provided an efficient method for the remediation of heavy metal-contaminated soils.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号