首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Modelling tillage translocation using step, linear-plateau and exponential functions
Authors:David A Lobb  R Gary Kachanoski
Institution:

a Department of Soil Science, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada

b University of Saskatchewan, Saskatoon, Canada

Abstract:The distance over which soil is displaced and mixed during tillage has important implications for the understanding the dynamics of soil variability within complex soil-landscapes. In two preceding studies of tillage translocation, tillage was observed to displace soil over a length of approximately 1 m following single passes of four tillage implements (chisel plough, mouldboard plough, tandem disc and field cultivator), and over a length of approximately 2 m per sequence of conventional tillage (one pass of mouldboard plough, two passes of tandem disc and one pass of field cultivator). Using data from these studies step, linear-plateau and exponential functions were assessed for their ability to estimate the magnitude of translocation and the redistribution pattern of soil within the till-layer, and to predict the redistribution pattern of soil within the till-layer. On average, step, linear-plateau and exponential models estimated 100.0%, 100.2% and 102.5% of the magnitude of translocation and 76%, 88% and 93% of the soil redistribution pattern, respectively. Based on these results, it was concluded that linear-plateau and exponential functions are suitable models of tillage translocation. The exponential model was superior to the step and linear-plateau models, and an improvement over the existing diffusion model.
Keywords:Tillage translocation  Modelling  Exponential function  Linear-plateau function  Step function  Diffusion function
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号