首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Water infiltration and soil structure related to organic matter and its stratification with depth
Authors:A J Franzluebbers  
Institution:

USDA Agricultural Research Service, J. Phil Campbell Sr. Natural Resources Conservation Center, 1420 Experiment Station Road, Watkinsville, GA 30677-2373, USA

Abstract:Soil organic matter is a key attribute of soil quality that impacts soil aggregation and water infiltration. Two soils (Typic Kanhapludults), one under long-term management of conventional tillage (CT) and one under long-term management of no tillage (NT), were sampled to a depth of 12 cm. Soil cores (15 cm diameter) were either left intact or sieved and repacked to differentiate between short-term (sieving) and long-term (tillage management) effects of soil disturbance on water infiltration, penetration resistance, soil bulk density, macroaggregate stability, and soil organic carbon (SOC). Mean weekly water infiltration was not different between sieved and intact cores from long-term CT (22 cm h?1), but was significantly greater in intact (72 cm h?1) than in sieved (28 cm h?1) soil from long-term NT. The stratification ratio of SOC (i.e., of 0–3 cm depth divided by that of 6–12 cm depth) was predictive of water infiltration rate, irrespective of short- or long-term history of disturbance. Although tillage is used to increase soil porosity, it is a short-term solution that has negative consequences on surface soil structural stability, surface residue accumulation, and surface-SOC, which are critical features that control water infiltration and subsequent water transmission and storage in soil. The stratification ratio of SOC could be used as a simple diagnostic tool to identify land management strategies that improve soil water properties (e.g., infiltration, water-holding capacity, and plant-available water).
Keywords:Bulk density  Conservation tillage  Macroaggregation  Mean-weight diameter  Soil organic carbon  Soil quality
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号