首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Soil macropore dynamics affected by tillage and irrigation for a silty loam alluvial soil in southern Portugal
Authors:M R Cameira  R M Fernando  L S Pereira
Institution:

Department of Agricultural Engineering, Superior Institute of Agronomy, Technical University of Lisbon, 1349-017, Lisbon, Portugal

Abstract:Soil tillage can have a significant effect on soil porosity and water infiltration. This study reports field measurements of near saturated hydraulic conductivity in an undisturbed soil under two tillage treatments, conventional tillage (CT) and minimum tillage (MT). The objective was to determine effective macro and mesoporosities, porosity dynamics during the irrigation season, and their contribution to water flow. Field observations were performed during the 1998 maize (Zea mays L.) cropping season in an Eutric Fluvisol with a silty loam texture, located in the Sorraia River Watershed in the south of Portugal. Infiltration measurements were done with a tension infiltrometer. At each location an infiltration sequence was performed corresponding to water tensions (φ) of 0, 3, 6 and 15 cm. Five sets of infiltration measurements were taken in both treatments in the top soil layer between May and September. One set of measurements was done at the depth of 30 cm at the bottom of the plowed layer in the CT plot. After 5 years of continuous tillage treatments the results show that regardless of the tillage treatment, saturated conductivity values K(φ0) were several times larger than near saturation conductivity K(φ3). This indicates that subsurface networks of water conducting soil pores can exist in both CT and MT maize production systems. In CT, the moldboard plow created macro and mesoporosity in the top soil layer while breaking pore continuity at 30 cm depth. This porosity was partially disrupted by the first irrigation, resulting in a significant decrease of 45% in the macropore contribution to flow. Later in the season, the irrigation effect was overlaid by the root development effect creating new channels or continuity between existing pores. In MT macroporosity contribution to flow did not show significant differences in time, representing 85% of the total flow. In both the treatments, macropores were the main contributing pores to the total flow, in spite of the very low macroporosity volumes.
Keywords:Preferential flow  Macropores  Soil tillage  Tension infiltrometer  Silt loam  Portugal
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号