首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Adsorption of phthalic acid and salicylic acid by two variable charge soils as influenced by sulphate and phosphate
Authors:R K Xu    S C Xiao    H Zhang    J Jiang  & G L Ji
Institution:State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P.O. Box 821, Nanjing, China; , and Department of Chemistry, Tennessee Technological University, Cookeville, TN 38505-0001, USA
Abstract:Low‐molecular‐weight (LMW) organic acids exist widely in soils, especially in the rhizosphere, and the adsorption of these acids may affect their reactions in soils. The adsorption behaviour of phthalic acid and salicylic acid by two variable charge soils (a Rhodic Ferralsol and a Haplic Acrisol) was investigated. Both soils exhibited great adsorption capacity for these organic acids, with a greater affinity for phthalic acid. The Rhodic Ferralsol adsorbed more organic acids of both kinds than the Haplic Acrisol, which was consistent with the content of iron and aluminum oxides in the two soils. The iron oxides in these soils played a significant role in adsorption of the organic acids, whilst the soil aluminosilicate minerals, such as kaolinite, showed a small adsorption capacity. The presence of phosphate and sulphate caused a decrease in the adsorption of both organic acids because of their competition with them for sorption sites. The phosphate showed a bigger inhibition on the adsorption than sulphate as a result of a greater amount of phosphate adsorbed by the soils. The adsorption of both organic acids was affected by pH only slightly at pH < 4.5. However, the adsorption decreased with the increase in pH at pH > 4.5. A similar trend was observed for the phosphate system, but the opposite was seen for the sulphate system. This suggests that the inhibition of sulphate on the adsorption of the organic acids decreased with the increase in pH, because the adsorption of sulphate decreased strongly with increasing pH.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号