首页 | 本学科首页   官方微博 | 高级检索  
     检索      


COURSE OF DRY MATTER AND NITROGEN ACCUMULATION OF SPRING WHEAT GENOTYPES KNOWN TO VARY IN PARAMETERS OF NITROGEN USE EFFICIENCY
Authors:Christos Noulas  Ioannis Alexiou  Juan M Herrera  Peter Stamp
Institution:1. National Agricultural Research Foundation, Institute for Soil Mapping and Classification 1 , Larissa , Greece;2. Institute of Plant Sciences, Swiss Federal Institute of Technology , Lindau , Switzerland;3. Institute of Plant Sciences, Swiss Federal Institute of Technology , Zürich , Switzerland
Abstract:Field experiments were conducted for two years to compare and identify bread spring wheat (Triticum aestivum L.) genotypes which make the most efficient use of nitrogen (N). Such information is required for breeding strategies to reverse the negative relationship between yield and protein content. Three Swiss spring wheat cultivars (‘Albis’, ‘Toronit’, ‘Pizol’) and an experimental line (‘L94491’) were grown without (N0; 0 kg N ha?1) and with high fertilizer N (NH4NO3); (N1; 250 kg N ha?1) supply on a clay loam soil with low organic matter content. Biomass and nitrogen accumulation in biomass as well as the leaf growth and senescence patterns (SPAD) were investigated in an attempt to explain the physiology of growth and N translocation of these genotypes. The pre-anthesis accumulation of biomass and N in the biomass depended on genotype only at N1 in 2000. In this year, conditions were less favorable for the pre-anthesis accumulation of biomass and N, which was, on average, 10 and 20% lower, respectively, of the total than in 1999. The contribution of pre-anthesis assimilates to the grain yield (CPAY) was higher in 1999 for all genotypes (36.9%) compared to 2000 (13.5%) except ‘Toronit’. Between anthesis and maturity the climate influenced the genetic variability of some N use efficiency components: N translocation efficiency (NTE) and dry matter translocation efficiency (DMTE). NTE was higher in 1999 (68.1%) compared to 2000 (50.7%); 1999 was a year in which the post-anthesis period was drier and warmer than usual. ‘Toronit’ produced the highest biomass by maturity due mainly to greater and longer lasting green leaf area after anthesis. ‘Albis’ performed relatively well under low input conditions, with considerable amounts of N being re-translocated to the seeds at maturity (NHI), whereas ‘Pizol’ accumulated in grains N as high as for ‘L94491’. In a humid temperate climate breeding for greater N uptake and partitioning efficiency may be a promising way to minimize N losses and produce high phytomass and grain yields. Using high protein lines as selection material and combining them with high biomass genotypes may lead to high protein contents without decreasing yield.
Keywords:spring wheat  dry matter accumulation  nitrogen accumulation  nitrogen use efficiency parameters
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号