首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Impacts of extreme winter warming events on litter decomposition in a sub-Arctic heathland
Authors:S Bokhorst  JW Bjerke  TV Callaghan  GK Phoenix
Institution:a Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
b Norwegian Institute for Nature Research NINA, Polar Environmental Centre, NO-9296 Tromsø, Norway
c The Ecosystems Center, Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA 02543, USA
d Abisko Scientific Research Station, Royal Swedish Academy of Sciences, Abisko 981 07, Sweden
Abstract:Arctic climate change is expected to lead to a greater frequency of extreme winter warming events. During these events, temperatures rapidly increase to well above 0 °C for a number of days, which can lead to snow melt at the landscape scale, loss of insulating snow cover and warming of soils. However, upon return of cold ambient temperatures, soils can freeze deeper and may experience more freeze-thaw cycles due to the absence of a buffering snow layer. Such loss of snow cover and changes in soil temperatures may be critical for litter decomposition since a stable soil microclimate during winter (facilitated by snow cover) allows activity of soil organisms. Indeed, a substantial part of fresh litter decomposition may occur in winter. However, the impacts of extreme winter warming events on soil processes such as decomposition have never before been investigated. With this study we quantify the impacts of winter warming events on fresh litter decomposition using field simulations and lab studies.Winter warming events were simulated in sub-Arctic heathland using infrared heating lamps and soil warming cables during March (typically the period of maximum snow depth) in three consecutive years of 2007, 2008, and 2009. During the winters of 2008 and 2009, simulations were also run in January (typically a period of shallow snow cover) on separate plots. The lab study included soil cores with and without fresh litter subjected to winter-warming simulations in climate chambers.Litter decomposition of common plant species was unaffected by winter warming events simulated either in the lab (litter of Betula pubescens ssp. czerepanovii), or field (litter of Vaccinium vitis-idaea, and B. pubescens ssp. czerepanovii) with the exception of Vaccinium myrtillus (a common deciduous dwarf shrub) that showed less mass loss in response to winter warming events. Soil CO2 efflux measured in the lab study was (as expected) highly responsive to winter warming events but surprisingly fresh litter decomposition was not. Most fresh litter mass loss in the lab occurred during the first 3-4 weeks (simulating the period after litter fall).In contrast to past understanding, this suggests that winter decomposition of fresh litter is almost non-existent and observations of substantial mass loss across the cold season seen here and in other studies may result from leaching in autumn, prior to the onset of “true” winter. Further, our findings surprisingly suggest that extreme winter warming events do not affect fresh litter decomposition.
Keywords:Arctic  Betula pubescens ssp  czerepanovii  Climate change  Decomposition  Extreme weather  Freeze-thaw  Snow  Vaccinium vitis-idaea  V  myrtillus  Winter warming event
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号