首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Belowground interactions between intercropped wheat and Brassicas in acidic and alkaline soils
Authors:Dongmei Wang  Zakaria Solaiman  Zed Rengel
Institution:a School of Soil and Water Conservation, Beijing Forestry University, Key-Laboratory of Soil and Water and Combating Desertification, Ministry of Education, Beijing 100083, PR China
b Soil and Land Systems, School of Earth and Environmental Sciences, The University of Adelaide, DP 636, SA 5005, Australia
c Soil Science and Plant Nutrition, School of Earth and Geographical Science, The University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Australia
Abstract:Our previous studies showed that, under P-limiting conditions, growth and P uptake were lower in the wheat genotype Janz than in three Brassica genotypes when grown in monoculture. The present study was conducted to answer the question if P mobilised by the Brassicas is available to wheat; leading to improved growth of wheat when intercropped with Brassicas compared to monocropped wheat. To assess if the interactions between the crops depend on soil type, the wheat genotype Janz and three Brassica genotypes (two canolas and one mustard) were grown for 6 weeks in monoculture or wheat intercropped with each Brassica genotype in an acidic and an alkaline soil with low P availability (with two plants per pot). Wheat grew equally well in the two soils, but the Brassicas grew better in the acidic than in the alkaline soil. In the acidic soil, monocropped Brassicas had a 3 to 4 fold greater plant dry weight (dw) and P uptake than wheat; plant dw and P uptake in wheat were decreased or not affected by intercropping and increased in the Brassicas. In the alkaline soil, dw and P uptake of the Brassicas was twice as high as in wheat, with intercropping having no effect on these parameters. The contribution of wheat to the total shoot dw and P uptake per pot was 4-21% and 32-40% in acidic and alkaline soil, respectively. Mycorrhizal colonisation was low in all genotypes in the acidic soil (1-6%). In the alkaline soil, mycorrhizal colonisation of monocropped wheat was 62%, but only 43-47% in intercropped wheat. Intercropping decreased P availability in the rhizosphere of wheat in the acidic soil but had no effect on rhizosphere P availability in the alkaline soil. Intercropping had a variable effect on rhizosphere microbial community composition (assessed by fatty acid methylester analysis (FAME) and ribosomal intergenic spacer amplification (RISA)), ranging from intercropping having no effect on the rhizosphere communities to intercropping resulting in a new and similar rhizosphere community composition in both genotypes. The results of this study show that intercropping with Brassicas does not improve growth and P uptake of wheat; thus there is no indication that P mobilised by the Brassicas is available to wheat.
Keywords:Brassicas  Intercropping  Microbial community composition  Monocropping  Mycorrhiza  P uptake  Rhizosphere  Wheat
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号