首页 | 本学科首页   官方微博 | 高级检索  
     检索      

玉米根际和非根际土壤细菌微多样性与土壤有机碳矿化的关系
引用本文:付先恒,李世清,岳善超,沈玉芳.玉米根际和非根际土壤细菌微多样性与土壤有机碳矿化的关系[J].水土保持通报,2023,43(1):323-331.
作者姓名:付先恒  李世清  岳善超  沈玉芳
作者单位:中国科学院 水利部 水土保持研究所, 陕西 杨凌 712100;中国科学院大学 北京 100049;中国科学院 水利部 水土保持研究所, 陕西 杨凌 712100;西北农林科技大学 资源与环境学院, 陕西 杨凌 712100
基金项目:国家重点研发计划“黄土高原旱作适水改土与产能提升技术模式及应用”(2021YFD1900700)。
摘    要:目的]运用高级别分类学分辨率揭示玉米根际和非根际土壤中细菌群落微多样性,并探讨微多样性与土壤有机碳矿化的关系,从更精细的分类学分辨率水平上为玉米根际土壤中微生物驱动的碳循环提供理论依据。方法]以西北农林科技大学曹新庄试验农场为依托,采取田间生长条件下玉米根际和非根际两种土壤类型。利用高通量测序技术,比较OTUs和ASVs两种分类学分辨率水平上玉米根际和非根际土壤中的细菌群落结构,揭示细菌群落的微多样性。同时通过培养试验检测根际和非根际土壤的有机碳矿化特性。结果]通过比较OTUs和ASVs两种分类学分辨率水平上的细菌群落,OTUs和ASVs两种方式显示出相似的细菌群落结构。在玉米根际和非根际土壤类型中,ASVs在更高分类学分辨率水平上描绘细菌群落组成,同时揭示了普遍存在于OTUs内的不同菌株或生态型。此外,两种不同生长策略(r-策略和K-策略)细菌物种的相对丰度差异是导致根际和非根际土壤细菌群落结构不同的主要因素。培养试验表明,根际土壤有机碳矿化量显著高于非根际土壤。3 a的连续采样分析结果表明,根系是田间成熟玉米根际和非根际土壤理化性质差异的主要因素而受时间(2019—2021年...

关 键 词:根际土壤  非根际土壤  细菌  微多样性  土壤有机碳
收稿时间:2022/7/29 0:00:00
修稿时间:2022/10/7 0:00:00

Relationship of Bacterial Microdiversity of Rhizosphere and Bulk Soil with Soil Organic Carbon Mineralization in Maize Fields
Fu Xianheng,Li Shiqing,Yue Shanchao,Shen Yufang.Relationship of Bacterial Microdiversity of Rhizosphere and Bulk Soil with Soil Organic Carbon Mineralization in Maize Fields[J].Bulletin of Soil and Water Conservation,2023,43(1):323-331.
Authors:Fu Xianheng  Li Shiqing  Yue Shanchao  Shen Yufang
Institution:Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resource, Yangling, Shaanxi 712100, China;University of Chinese Academy of Sciences, Beijing 100049, China;Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resource, Yangling, Shaanxi 712100, China;College of Resources and Environmental Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
Abstract:Objective] The bacterial community microdiversity in the maize rhizosphere and bulk soil was determined to study the relationship between microdiversity and soil organic carbon mineralization through the use of high-resolution taxonomy in order to provide a theoretical foundation for microbially driven carbon cycling in the maize rhizosphere. Methods] The rhizosphere and bulk soil samples were collected in maize fields on the experimental farm of Cao Xinzhuang, Northwest A&F University. High-throughput sequencing technology was used to detect the bacterial community structure in the rhizosphere and bulk soil. Thereafter, distinct taxonomic resolution levels (OTUs vs ASVs) were used to reveal the microdiversity of bacterial communities. Incubation experiments were conducted to examine organic carbon mineralization characteristics of the rhizosphere and bulk soil of maize. Results] The distinct taxonomic resolution levels revealed similar bacterial community structure in the rhizosphere and bulk soil. ASVs depicted bacterial community composition at a fine scale taxonomic resolution level, and revealed different strains or ecotypes prevalent within the same OTU. Furthermore, differences in the relative abundance of bacterial species from distinct growth strategies (r-and K-strategies) were the main factors contributing to the different bacterial community structures in the rhizosphere and bulk soil. Incubation experiments showed that organic carbon mineralization was significantly higher in the rhizosphere than in bulk soil. The results of three years of continuous sampling revealed that roots were the main factor causing differences between the rhizosphere and bulk soil physicochemical properties of mature maize in the field, and that time had little influence (from 2019 to 2021). Cumulative mineralization of soil organic carbon was associated with bacterial microdiversity between the rhizosphere and bulk soil. Conclusion] ASV-level exhibited significant differences in bacterial microdiversity between the rhizosphere and bulk soil in a maize field, and bacterial microdiversity was associated with cumulative mineralization of soil organic carbon.
Keywords:rhizosphere  bulk soil  bacteria  microdiversity  soil organic carbon
点击此处可从《水土保持通报》浏览原始摘要信息
点击此处可从《水土保持通报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号