首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Environmentally induced changes in amino acid composition in the grain of durum wheat grown under different water and temperature regimes in a Mediterranean environment
Authors:Del Moral Luis F García  Rharrabti Yahia  Martos Vanessa  Royo Conxita
Institution:Departamento de Fisiología Vegetal, Facultad de Ciencias, Instituto de Biotecnología, Universidad de Granada, 18071 Granada, Spain. lfgm@ugr.es
Abstract:Amino acid composition is an important feature in determining the nutritional value of wheat grain for human and animal diets. Environmental conditions are known to influence protein quantity as well as grain production and, in turn, amino acid composition. In this study, grain yield, protein content, and amino acid composition were determined in 10 durum wheat genotypes under three water and temperature regimes in a Mediterranean environment. The highest value for grain-protein content (15.7%) was found in the warmer and driest environment and the lowest (12.8%) in the irrigated environment. Although amino acid composition showed significant variation for all genotypes, with the exception of arginine and cysteine, major changes in amino acid composition were caused by environmental conditions and in particular by water availability and temperature during the grain-filling period, which significantly altered the duration of grain development. The amino acids with the highest percentage of variation between environments were tyrosine (26.4%), lysine (23.7%), methionine (20.3%), threonine (19.3%), and valine (15.6%), whereas phenylalanine (5.1%), glycine (6.4%), and aspartic acid (6.8%) showed the least variation between environments. Whereas the content of glutamine, phenylalanine, and proline increased with the decrease in grain-filling duration, the remaining amino acids tended to diminish, presumably because high temperature and drought favored the deposition of gliadins (proteins particularly rich in glutamine and proline), to the detriment of albumins and globulins (proteins especially rich in threonine, lysine, methionine, valine, and histidine). Despite the negative correlations found between the percentage of protein and its content in essential amino acids, the results indicate that reductions in lysine per unit of food were not very pronounced (0.32 to 0.29 g/100 g of flour) with increases of up 22.7% in grain-protein content, whereas threonine did not change and valine even slightly increased.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号