首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Grape-seed procyanidins act as antiinflammatory agents in endotoxin-stimulated RAW 264.7 macrophages by inhibiting NFkB signaling pathway
Authors:Terra Ximena  Valls Josep  Vitrac Xavier  Mérrillon Jean-Michel  Arola Lluís  Ardèvol Anna  Bladé Cinta  Fernandez-Larrea Juan  Pujadas Gerard  Salvadó Josepa  Blay Mayte
Institution:Department of Biochemistry and Biotechnology, Unitat d'Enologia del Centre de Referència en Tecnologia dels Aliments de la Generalitat de Catalunya, Universitat Rovira i Virgili, Tarragona, Spain.
Abstract:Procyanindin extract (PE) is a mixture of polyphenols, mainly procyanidins, obtained from grape seed with putative antiinflammatory activity. We evaluated the PE effect on RAW 264.7 macrophages stimulated with lipopolysaccharide plus interferon-gamma that show a rapid enhanced production of prostaglandin E2 (PGE2) and nitric oxide (NO). Our results demonstrated that PE significantly inhibited the overproduction of NO, dose and time dependently. PE caused a marked inhibition of PGE2 synthesis when administered during activation. Moreover, PE pretreatment diminished iNOS mRNA and protein amount dose dependently (10-65 microg/mL). PE (65 microg/mL) pretreatment inhibited NFkappaB (p65) translocation to nucleus by nearly 40%. Trimeric and longer oligomeric-rich procyanidin fractions from PE (5-30 microg/mL) inhibited iNOS expression but not the monomeric forms catechin and epicatechin. Thus, we show that the degree of polymerization is important in determining procyanidin effects. PE was considerably a more effective inhibitor of NO biosynthesis (IC50 = 50 microg/mL) in comparison to other antiinflammatories, such as aspirin (3 mM), indomethacin (20 microM), and dexamethasone (9 nM). In conclusion, PE modulates inflammatory response in activated macrophages by the inhibition of NO and PGE2 production, suppression of iNOS expression, and NFkB translocation. These results demonstrate an immunomodulatory role of grape seed procyanidins and thus a potential health-benefit in inflammatory conditions that exert an overproduction of NO and PGE2.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号