首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Suitability of terrestrial laser scanning for studying surface roughness effects on concentrated flow erosion processes in rangelands
Authors:Jan UH Eitel  C Jason Williams  Lee A Vierling  Osama Z Al-Hamdan  Frederick B Pierson
Institution:1. Geospatial Laboratory for Environmental Dynamics, University of Idaho, Moscow, ID 83844-1135, USA;2. McCall Outdoor Science School, University of Idaho, McCall, ID 83638, USA;3. US Department of Agriculture, Agricultural Research Service, Northwest Watershed Research Center, Boise, ID 83712-7716, USA;4. Department of Biological and Agricultural Engineering, University of Idaho, Moscow, ID 83844-0904, USA
Abstract:Surface roughness is thought to affect concentrated flow erosion – a major mechanism of soil loss on disturbed rangelands. However, quantifying surface roughness in the field at appropriately fine spatial scales is laborious and the scale at which to conduct meaningful roughness measurements is difficult to discern. Rapid, objective, and repeatable field methods are therefore needed to accurately measure surface roughness across a range of spatial scales to advance our understanding and modeling of concentrated flow erosion processes. Surface roughness can be derived from surface topography mapped at the sub-cm level using a field-portable terrestrial laser scanner (TLS). To test the suitability of terrestrial laser scanning for studying surface roughness effects on erosion processes in rangelands, we used concentrated flow simulation techniques at 8.5 m2 plots that were randomly placed at rangeland sites in southeastern Oregon and southwestern Idaho, USA. Local surface roughness (locRMSH) was calculated as the standard deviation of TLS mapped surface heights within moving windows varying in size from 30 × 30 to 90 × 90 mm. The mean locRMSH of the eroded area and entire plot were negatively correlated (r2 > 0.71, RMSE < 95.97 g min− 1, and r2 > 0.74, RMSE < 90.07 g min− 1, respectively) with concentrated flow erosion. The strength of the locRMSH–erosion relationship and regression model parameters were affected by the moving window size, emphasizing the scale dependence of the locRMSH–erosion relationship. Adjusting locRMSH for slope effects decreased the strength of the locRMSH–erosion relationship from r2 < 0.83 to < 0.26. Our results indicate that TLS is a useful tool to enhance our current understanding of the effect of surface roughness on overland flow erosion processes and advance hydrologic and erosion model parameter development. Further research is needed to evaluate the locRMSH – concentrated flow erosion relationship over a wider range of soil properties, surface conditions, and spatial extents.
Keywords:Microtopography  Erosion prediction  Terrestrial laser scanning  TLS  Surface roughness  Concentrated flow formation
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号