首页 | 本学科首页   官方微博 | 高级检索  
     检索      

缓坡面细沟发育过程及水沙关系的室内试验研究
引用本文:和继军,孙莉英,李君兰,蔡强国.缓坡面细沟发育过程及水沙关系的室内试验研究[J].农业工程学报,2012,28(10):138-144.
作者姓名:和继军  孙莉英  李君兰  蔡强国
作者单位:1. 首都师范大学初等教育学院,北京100048;中国科学院水利部水土保持研究所黄土高原土壤侵蚀与旱地农业国家重点实验室,杨凌712100;中国科学院地理科学与资源研究所中国科学院陆地水循环与地表过程重点实验室,北京100101
2. 中国科学院水利部水土保持研究所黄土高原土壤侵蚀与旱地农业国家重点实验室,杨凌712100;中国科学院地理科学与资源研究所中国科学院陆地水循环与地表过程重点实验室,北京100101
3. 中国科学院地理科学与资源研究所中国科学院陆地水循环与地表过程重点实验室,北京,100101
基金项目:国家自然科学基金面上基金项目(40971165);国家自然科学基金重点基金项目(41130744);黄土高原土壤侵蚀与旱地农业国家重点实验室开放基金(10501-1220)
摘    要:为了明确细沟发育特征及对坡面产流产沙的作用,该文在固定坡度(10°)和2个雨强(1.5和2mm/min)条件下,采用室内纯净水模拟降雨试验的方法,研究了塿土和黄绵土的坡面细沟发育过程和水沙关系。研究结果表明,细沟主要由沿坡面方向呈线状平行分布的跌坎链相互连通演化而成,在雨强较小时塿土更易形成细沟,而黄绵土在雨强较大时才能形成细沟。含沙量与侵蚀速率的变化规律与坡面跌坎和细沟的形成具有同步关系,雨强的增大不会引起塿土含沙量和侵蚀速率的明显增加,但对黄绵土含沙量和侵蚀速率的变化有很大影响,在大雨强时黄绵土含沙量和侵蚀速率会迅速增加,并在坡面细沟形成后很快超过塿土。同时,细沟的存在并不会引起塿土含沙量和侵蚀速率的明显变化,但黄绵土对坡面细沟反应敏感,细沟一旦形成会导致其含沙量和侵蚀量的急剧增加。该研究为坡耕地细沟侵蚀的有效防治提供相应的理论指导。

关 键 词:侵蚀  泥沙流移  降雨量  水沙关系  缓坡面
收稿时间:2011/12/27 0:00:00
修稿时间:4/7/2012 12:00:00 AM

Experimental study on rill evolution process and runoff-sediment relationship for gentle slope
He Jijun,Sun Liying,Li Junlan and Cai Qiangguo.Experimental study on rill evolution process and runoff-sediment relationship for gentle slope[J].Transactions of the Chinese Society of Agricultural Engineering,2012,28(10):138-144.
Authors:He Jijun  Sun Liying  Li Junlan and Cai Qiangguo
Institution:1.Elementary Educational College,Capital Normal University,Beijing 100048,China;2.State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau,Institute of Water and Soil Conservation,Chinese Academy of Sciences and Ministry of Water Resources,Yangling 712100,China;3.Key Laboratory of Water Cycle and Related Land Surface Processes,Institute of Geographical Sciences and Natural Resources Research,Chinese Academy of Sciences,Beijing 100101,China)
Abstract:In this paper, the indoor simulated rainfall experiment with pure water was conducted to study rill evolution process and relationship between runoff and sediment for Yangling soil and Ansai soil under the fixed slope gradient (10°) and two rainfall intensities (1.5 mm/min, 2.0 mm/min). Results showed that rill was evolved from a series of step-down floor which were parallel to each other and distributed with line at slope surface direction. Yangling soil produced the rill with a small rainfall intensity, and Aasai soil produced the rill only with larger rainfall intensity. The change rule of sediment concentration and erosion rate and the moment of forming step-down floor and rill have good consistency, and the increasing rainfall intensity has little influence on sediment concentration and erosion rate for Yangling soil, however, sediment concentration and erosion rate for Aasai soil could increase rapidly and exceed Yangling soil with the emergence of rill when the rainfall intensity was larger. For Yangling soil, the rill could not cause obvious change of sediment concentration and erosion rate, however, for Ansai soil, rill formation could result in a sharp increase of sediment concentration and erosion amount.
Keywords:erosion  sediment transport  rainfall  sediment yield relationship  gentle slope
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《农业工程学报》浏览原始摘要信息
点击此处可从《农业工程学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号