首页 | 本学科首页   官方微博 | 高级检索  
     检索      

平底悬链线形明渠水力最优断面求解
引用本文:韩延成,梁梦媛,Said M. Eas,唐伟,初萍萍,高学平.平底悬链线形明渠水力最优断面求解[J].农业工程学报,2019,35(6):90-99.
作者姓名:韩延成  梁梦媛  Said M. Eas  唐伟  初萍萍  高学平
作者单位:济南大学水利与环境学院;Department
基金项目:山东省自然科学基金(ZR2017LEE028);山东省"一事一议"(周飞艨)人才计划项目;山东省重点研发计划(2016GSF117038);国家"十二五"科技支撑计划(2015BAB07B02-6)
摘    要:断面设计是渠道设计的重要内容之一,适宜的渠道断面不仅能够增加过流能力,提高输水效率,减小输水损失,还能降低建造成本。该文提出了一种具有平底和悬链线形侧边的明渠断面。这种断面将平底和悬链线侧边平滑连接,既具有平底断面建造容易、灵活,管护方便,底部容易压实,侧边和平底可以用不同材料建造(以降低成本)等优点,也具有悬链线形断面过流能力大、无应力集中拐角、不宜渗漏、防冻胀能力强,耐久性好等优点,可广泛应用于大、中、小型渠道及寒区,具有良好的实用价值。推导了过流面积、湿周、水面宽度等水力断面特性计算公式。提出了一个更简单的正常水深的迭代算法。基于拉格朗日乘子法,推导出了平底悬链线形明渠的水力最优断面,结果表明其水力最优断面的底宽与水深比、水面宽与水深比、底宽与形状系数比、水面宽度与形状系数比、形状系数与水深比均为常数:宽深比等于0.405,形状系数与水深比等于0.474,水面宽与水深的比值为2.112,底宽与形状系数的比值为0.855。与现有平底断面(梯形、平底抛物线形、平底半立方抛物线形)进行了比较,结果表明,在过流面积或湿周一定的情况下,平底悬链线形断面的过流能力最大,相反,在流量一定的情况下,平底悬链线形断面的过流面积、湿周、水面宽度是最小的。与传统的悬链线形渠道进行了比较,增加平底后,在同等条件下,平底悬链线形渠道水力最优断面的过流能力不仅没有降低,反而增加了,意味着其经济性也优于传统的悬链线断面。研究为平底悬链线形渠道设计提供理论支撑。

关 键 词:形状  水力学  渠道  平底  悬链线形  水力最优断面
收稿时间:2018/7/31 0:00:00
修稿时间:2019/2/10 0:00:00

Optimal hydraulic section of horizontal-bottom catenary channel
Han Yancheng,Liang Mengyuan,Said M. Eas,Tang Wei,Chu Pingping and Gao Xueping.Optimal hydraulic section of horizontal-bottom catenary channel[J].Transactions of the Chinese Society of Agricultural Engineering,2019,35(6):90-99.
Authors:Han Yancheng  Liang Mengyuan  Said M Eas  Tang Wei  Chu Pingping and Gao Xueping
Institution:1. School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China;,1. School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China;,2. Department of Civil Engineering, Ryerson University, Toronto M5B 2K3, Canada;,1. School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China;,1. School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China; and 3. State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300072, China
Abstract:Abstract: A suitable channel section cannot only increase flow capacity of channel, improve efficiency of water resources, and reduce water leakage loss, but also decrease construction cost. This paper proposed a channel section with a horizontal bottom and catenary sides (HBC). The HBC section, on one hand, provided a larger flow capacity, lesser-sharp angles of stress concentration, less leakage, better slope stability and frost heave resistance than trapezoids and rectangles sections. On the other hand, it had lots of advantages of horizontal bottom sections, such as simpler construction, easier leveling and compaction of the foundation, and lesser construction cost. The most important advantage of this section was that the horizontal bottom and sides could be built with different materials or thickness for decreasing the construction cost or other purposes. The shape function for HBC was defined. The formulas for the flow area, wetted perimeter, and water surface width were presented. A simpler iterative algorithm for calculation of the normal depth was developed. The iterative convergence by this algorithm was evidenced. Comparisons showed that this simpler iterative algorithm was better than classic Newton iterative algorithm. The optimal model of the best hydraulic section of HBC was built. The general differential equations for all the sections having horizontal bottomed and curve sides were derived. The best hydraulic section of HBC channel was obtained according to Lagrange multiplier method and its characteristics were presented including shape factor, ratio of horizontal bottom width to shape factor etc. The results showed that the following optimum parameters were constant for the best hydraulic HBC section: bottom width to water depth, water surface width to depth, bottom width to shape factor, water surface width to shape factor, shape factor to water depth equals. The ratio of water surface width for catenary part to shape factor equaled 3.602, the ratio of bottom width to shape factor equaled 0.855, the ratio of bottom width to water depth equaled 0.405, and the ratio of shape factor to water depth equaled 0.474, and the ratio of total water surface width to water depth equaled 2.112. Various explicit formulae to calculate the normal depth, critical depth, shape factor, flow area, wetted perimeter and water surface width of the HBC section were derived for the best hydraulic section for HBC channel. These formulas should make the design of the HBC section easier and promote its practical applications. The optimum parameters of the best hydraulic section for existing horizontal bottom (HB) sections, such as trapezoidal, rectangle, horizontal bottomed parabolic, and horizontal bottomed semi-cubic parabolic were derived. The comparison results showed that the HBC section had larger discharge than those of existing horizontal bottom (HB) sections under the same conditions. In addition, the flow area, wetted perimeter, and water surface of the HBC section were the smallest, which means that earthwork cost, lining cost and land expropriation cost are all decreased, which means HBC section is more economical. Comparison with classic catenary section showed that the discharge of the HBC was larger than that of the classic catenary section under the same conditions. The flow area, wetted perimeter and water surface of the HBC were smaller than these of the classic catenary section, which means the HBC section has better hydraulic characteristics. Its economy was also superior to the traditional catenary section. The results were verified by examples. The proposed section should enrich existing types of open channel sections. The research provides a new practical and flexible channel section for channel design and theoretical support for horizontal-bottom catenary channel design and applications.
Keywords:shapes  hydraulics  channels  horizontal bottom  catenary  best hydraulic section
本文献已被 CNKI 等数据库收录!
点击此处可从《农业工程学报》浏览原始摘要信息
点击此处可从《农业工程学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号