首页 | 本学科首页   官方微博 | 高级检索  
     检索      

大跨度主动蓄能型温室温湿环境监测及节能保温性能评价
引用本文:周升,张义,程瑞锋,杨其长,方慧,周波,卢威,张芳.大跨度主动蓄能型温室温湿环境监测及节能保温性能评价[J].农业工程学报,2016,32(6):218-225.
作者姓名:周升  张义  程瑞锋  杨其长  方慧  周波  卢威  张芳
作者单位:1. 中国农业科学院农业环境与可持续发展研究所,北京,100081;2. 农业部设施农业节能与废弃物处理重点实验室,北京,100081
基金项目:国家科技支撑计划(2014BAD08B02);公益性行业(农业)科研专项(201203002);基本科研业务费(BSRF201405);国家自然科学基金项目(51508560)
摘    要:针对日光温室土地利用率低,单体小不能进行立体栽培果树种植,不利于机械化操作等问题。该文提出一种大跨度主动蓄能型温室,该温室南北走向,双屋面拱形钢骨架结构,并采用主动蓄放热系统进行能量的蓄积与释放。该试验以传统砖墙日光温室作为对照,对大跨度主动蓄能型温室室内外温湿度以及主动蓄放热系统的能量收支进行分析,并对比2种温室的建造成本,综合分析了试验温室保温节能效果及经济效益。结果表明:大跨度主动蓄能型温室土地利用率高达87.4%。温室夜间平均气温高于10℃,无极端低温,晴天夜间平均气温比对照温室高1.5~3.1℃,比室外高13.9~19.3℃;阴天夜间平均气温比对照温室高1.2~2.8℃,比室外高12.5~18.9℃。夜间室内相对湿度平均比对照温室低7%~10%。主动蓄放热系统性能系数COP(coefficient of performance)为3.4~4.2,平均每天能耗0.013 k Wh/m2,与传统燃煤锅炉加温系统相比,平均节能率为47%。大跨度主动蓄能型温室建造成本每平米307.2元,比传统砖墙日光温室低144.5元。大跨度主动蓄能型温室是一种土地利用率高,单体大,保温性能良好,能进行冬季果菜生产的新型温室类型,且投入少,综合其经济环境效益,值得推广应用。

关 键 词:温室  温度  环境调控  土地利用率  大跨度  主动蓄放热系统  相对湿度  日光温室
收稿时间:9/9/2015 12:00:00 AM
修稿时间:2016/1/22 0:00:00

Evaluation on heat preservation effects in micro environment of large scale greenhouse with active heat storage system
Zhou Sheng,Zhang Yi,Cheng Ruifeng,Yang Qichang,Fang Hui,Zhou Bo,Lu Wei and Zhang Fang.Evaluation on heat preservation effects in micro environment of large scale greenhouse with active heat storage system[J].Transactions of the Chinese Society of Agricultural Engineering,2016,32(6):218-225.
Authors:Zhou Sheng  Zhang Yi  Cheng Ruifeng  Yang Qichang  Fang Hui  Zhou Bo  Lu Wei and Zhang Fang
Institution:1.Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China;2.Key Labatory of Energy Conservation and Waste Management of Agricultural Structures, Ministry of Agriculture, Beijing 100081, China,1.Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China;2.Key Labatory of Energy Conservation and Waste Management of Agricultural Structures, Ministry of Agriculture, Beijing 100081, China,1.Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China;2.Key Labatory of Energy Conservation and Waste Management of Agricultural Structures, Ministry of Agriculture, Beijing 100081, China,1.Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China;2.Key Labatory of Energy Conservation and Waste Management of Agricultural Structures, Ministry of Agriculture, Beijing 100081, China,1.Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China;2.Key Labatory of Energy Conservation and Waste Management of Agricultural Structures, Ministry of Agriculture, Beijing 100081, China,1.Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China;2.Key Labatory of Energy Conservation and Waste Management of Agricultural Structures, Ministry of Agriculture, Beijing 100081, China,1.Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China;2.Key Labatory of Energy Conservation and Waste Management of Agricultural Structures, Ministry of Agriculture, Beijing 100081, China and 1.Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China;2.Key Labatory of Energy Conservation and Waste Management of Agricultural Structures, Ministry of Agriculture, Beijing 100081, China
Abstract:
Keywords:greenhouses  temperature  environmental regulations  land utilization efficiency  large scale  active heat storage and release system  relative humidity  Chinese solar greenhouse
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《农业工程学报》浏览原始摘要信息
点击此处可从《农业工程学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号