首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Vulnerability to eutrophication of a semi-annual life history: A lesson learnt from an extinct eelgrass (Zostera marina) population
Authors:Marieke M van Katwijk  Arthur R Bos  Peer Kennis
Institution:a Department of Environmental Science, Radboud University Nijmegen, PO Box 9010, 6500 GL Nijmegen, The Netherlands
b Davao del Norte State College, New Visayas, 8105 Panabo City, Philippines
Abstract:A semi-annual eelgrass (Zostera marina L.) population became extinct in 2004. It had flourished for many decades at Terschelling in the western Wadden Sea, one of the most eutrophied locations where seagrass growth has been recorded. Semi-annual populations survive the winter season by seed (annual), and by incidental plant survival (semi-annual). We compared seed bank dynamics and fate of plants between this impacted site and a reference site in the winter of 1990-1991. Seed bank density at Terschelling was extremely low (5-35 seeds m−2) in comparison to the reference site (>60 seeds m−2) and also in comparison to seed bank densities of (semi-)annual eelgrass populations in other parts of the world. Plant survival during winter was nil. Nevertheless, the population more than doubled its area in 1991, implying maximum germination and seedling survival rates. However, from 1992 onwards the decline set in and continued - while the nutrient levels decreased. To establish the cause of the low seed bank density, we conducted a transplantation experiment in 2004 to study the relationship between seed production and macro-algal cover. The transplantation experiment showed a negative relationship between the survival of seed producing shoots and suffocation by macro-algae, which is associated with light limitation and unfavourable biogeochemical conditions. The plants died before they had started to produce seeds. Thus, it is likely that macro-algal cover was responsible for the low seed bank density found in Terschelling in 1990-1991. Both the recorded low seed bank density and absence of incidental plant survival during winter were related to eutrophication. These parameters must have been a severe bottleneck in the life history of the extinct population at the impacted site, particularly as Z. marina seed banks are transient. Therefore we deduce that this population had survived at the edge of collapse, and became extinct after a small, haphazard environmental change. We argue that its resilience during these years must have been due to (i) maximum germination and seedling survival rates and (ii) spatial spreading of risks: parts of the population may have survived at locally macro-algae-free spots from where the area could be recolonised. As a consequence, the timing of the collapse was unpredictable and did not synchronise with the eutrophication process. The lesson learnt for conservation is to recognise that eutrophication may be a cause for seagrass population collapse and its eventual extinction, even years after nutrient levels stabilised, or even decreased.
Keywords:Annual  Demography  Eelgrass  Eutrophication  Extinction  Germination  Life strategy  Population dynamics  Restoration  Seed density  Zostera marina
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号