摘 要: | 肉牛活动过程中所表现出的行为是肉牛健康状况的综合体现,实现肉牛行为的快速准确识别,对肉牛疾病防控、自身发育评估和发情监测等具有重要作用。基于机器视觉的行为识别技术因其无损、快速的特点,已应用在畜禽养殖行为识别中,但现有的基于机器视觉的肉牛行为识别方法通常针对单只牛或单独某个行为开展研究,且存在计算量大等问题。针对上述问题,本文提出了一种基于SNSS-YOLO v7(Slim-Neck&Separated and enhancement attention module&Simplified spatial pyramid pooling-fast-YOLO v7)的肉牛行为识别方法。首先在复杂环境下采集肉牛的爬跨、躺卧、探究、站立、运动、舔砥和互斗7种常见行为图像,构建肉牛行为数据集;其次在YOLO v7颈部采用Slim-Neck结构,以减小模型计算量与参数量;然后在头部引入分离和增强注意力模块(Separated and enhancement attention module, SEAM)增强Neck层输出后的检测效果;最后使用SimSPPF(Simplified ...
|