摘 要: | 以闽西北杉木人工林为研究对象,选取涵盖中龄林、近熟林、成熟林3个龄组的700个小班作为样地进行调查,以林龄、地位指数、林分密度、平均胸径作为输入变量,单位蓄积量为输出变量,运用BP神经网络和支持向量机2种机器学习方法建立林分收获模型,并采用遗传算法对模型参数进行优化。随机将样本数据分成350个训练样本和350个验证样本,对不同模型的拟合精度、预测精度进行对比分析,其中参数优化后的BP神经网络和支持向量机模型训练样本精度分别达到0.935 37和0.936 33,预测结果精度分别为0.921 30和0.926 97,训练样本和验证样本的总体拟合平均相对误差值均低于7%。分析结果表明,2种模型拟合精度高、预测性能好,为杉木人工林林分收获模拟和预测奠定了基础。为比较2种方法预测结果的差异性,将350个验证样本样地平均分为7组,分别用优化后的2种模型计算各组的预测精度,对预测精度与训练精度的差值进行t检验,结果表明,2种建模方法的预测结果不存在显著性差异,但模型精度的提高对森林资源的精确监测和森林生长动态预测具有重要的理论价值。同时,研究发现支持向量机模型的拟合精度和泛化能力均优于BP神经网络,该方法为收获模型研究提供了新思路。
|