Effects of soil moisture and temperature on CH4 oxidation and N2O emission of forest soil |
| |
Authors: | Zhang Xiu-jun Xu Hui Chen Guan-xiong |
| |
Affiliation: | (1) Institute of Applied Ecology, Chinese Academy of Sciences, 110015 Shenyang, P.R. China |
| |
Abstract: | Soil samples were taken from depth of 0–12 cm in the virgin broad-leaved/Korean pine mixed forest in Changbai Mountain in April, 2000. 20 μL·L−1 and 200 μL·L−1 CH4 and N2O concentration were supplied for analysis. Laboratory study on CH4 oxidation and N2O emission in forest soil showed that fresh soil sample could oxidize atmospheric methane and product N2O. Air-dried soil sample could not oxidize atmospheric methane, but could product N2O. However, it could oxidize the supplied methane quickly when its concentration was higher than 20 μL·L−1. The oxidation rate of methane was increased with its initial concentration. An addition of water to dry soil caused large pulse of N2O emissions within 2 hours. There were curvilinear correlations between N2O emission and temperature (r2=0.706, p<0.05), and between N2O emission and water content (r2=0.2968, p <0.05). These suggested temperature and water content were important factors controlling N2O emission. The correlation between CH4 oxidization and temperature was also found while CH4 was supplied 200 μL·L−1 (r2=0.3573, p<0.05). Temperature was an important factor controlling CH4 oxidation. However, when 20 μL·L−1 CH4 was supplied, there was no correlation among CH4 oxidization, N2O emission, temperature and water content. Foundation item: This paper was supported by Chinese Academy of Sciences. Biography: ZHANG Xiu-jun (1960-), female, Ph. Doctor, lecture in Laboratory of Ecological Process of Trace Substance in Terrestrial Ecosystem, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110015, P.R. China. Responsible editor: Song Funan |
| |
Keywords: | Air-dried soil Fresh forest soil CH4 oxidation N2O emission |
本文献已被 SpringerLink 等数据库收录! |
|