首页 | 本学科首页   官方微博 | 高级检索  
     

基于味觉传感器阵列的玉米汁饮料分类辨识
引用本文:刘晶晶,孙永海,谢高鹏,王筱雨,孙钟雷. 基于味觉传感器阵列的玉米汁饮料分类辨识[J]. 农业工程学报, 2012, 28(24): 265-271
作者姓名:刘晶晶  孙永海  谢高鹏  王筱雨  孙钟雷
作者单位:1. 吉林大学生物与农业工程学院,长春 130022
2. Department of Chemistry and Biochemistry, University of Maryland, College Park MD 20740, USA
3. 长江师范学院生命科学与技术学院,重庆 408100
基金项目:国家自然科学基金资助项目(31271861);国家"863"高技术研究发展计划资助项目(2008AA100802)
摘    要:为了快速辨识不同口味的玉米汁饮料,确保同一种饮料质量的均一性,构建了包含12个传感器的味觉传感器阵列。使用代表酸、甜、苦、咸、鲜的呈味物质检测味觉传感器阵列对5种基本味觉辨识的能力。使用主成分分析和概率神经网络考察了该阵列对基本味觉的辨识效果,该阵列对基本味觉表现出良好的辨识能力。将该阵列应用于玉米汁饮料的分类辨识中,区分来自不同品牌的9种玉米汁。系统聚类分析表明了同一种玉米汁样本的味觉特征非常接近,可聚合为一类。通过主成分分析法实现数据降维,提取前3个主成分作为概率神经网络的输入神经元。试验结果表明:该味觉传感器阵列对不同种玉米汁饮料具有较好的辨识能力,辨识的正确率为95.06%。

关 键 词:传感器阵列  主成分分析法  聚类分析  玉米汁  分类辨识  神经网络
收稿时间:2012-04-28
修稿时间:2012-10-16

Classification identification of corn juices based on taste sensor array
Liu Jingjing,Sun Yonghai,Xie Gaopeng,Wang Xiaoyu and Sun Zhonglei. Classification identification of corn juices based on taste sensor array[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(24): 265-271
Authors:Liu Jingjing  Sun Yonghai  Xie Gaopeng  Wang Xiaoyu  Sun Zhonglei
Affiliation:1.College of Biological and Agricultural Engineering,Jilin University,Changchun 130022,China;2.Department of Chemistry and Biochemistry,University of Maryland,College Park MD 20740,USA;3.College of Life Science and Technology,Yangtze Normal University,Chongqing 408100,China)
Abstract:In order to identify corn juices with different flavor quickly and evaluate the conformance of the same corn juices, a taste sensor array including 12 sensors was built. The taste sensor array was tested with sweet, salty, sour, bitter and umami tastes as the evaluation of its ability to distinguish 5 basic tastes. Principal component analysis and Probabilistic neural networks were used for analyzing the effect to distinguish basic tastes based on the sensor array. The array allowed a successful recognition of the basic tastes. The taste recognition capability was further tested in the identification of corn juices. A total of 9 commercial corn juices from different brands were analyzed. Cluster analysis showed that taste characteristics from the same corn juices were similar, and aggregated as a cluster. Dimensionality reduction was achieved by Principal component analysis. The previous three principal components were applied as inputs of probabilistic neural networks. The taste sensor array showed good identification of corn juices with identification accuracy of 95.06%.
Keywords:sensor arrays   principal component analysis   cluster analysis   corn juices   identification   neural networks
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《农业工程学报》浏览原始摘要信息
点击此处可从《农业工程学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号