首页 | 本学科首页   官方微博 | 高级检索  
     

基于神经网络的灌溉用水量预测
引用本文:郑玉胜,黄介生. 基于神经网络的灌溉用水量预测[J]. 灌溉排水学报, 2004, 23(2): 59-61
作者姓名:郑玉胜  黄介生
作者单位:武汉大学,水利水电学院,湖北,武汉,430072;武汉大学,水利水电学院,湖北,武汉,430072
摘    要:
采用改进的BP网络对灌溉用水量进行了预测,针对BP网络的不足,采用遗传算法对网络初始权重进行了优化,并采用LM(Levenberg-Marquardt)算法进行了误差逆传播校正。通过引入遗传算法和LM算法,网络比传统的BP网络无论从精度和训练时间上都有了较大的改进。最后对湖北省宜昌市东风渠灌区进行实例分析,证明了该方法的有效性。

关 键 词:BP网络  LM算法  遗传算法  灌溉用水量  预测
文章编号:1000-646X(2004)02-0059-03
修稿时间:2004-03-01

Forecast of Irrigation Water Use Based on Neural Network
ZHENG Yu-sheng,HUANG Jie-sheng. Forecast of Irrigation Water Use Based on Neural Network[J]. Journal of Irrigation and Drainage, 2004, 23(2): 59-61
Authors:ZHENG Yu-sheng  HUANG Jie-sheng
Abstract:
Forecast of irrigation water use based on neural network was studied. Genetic algorithm was used to optimize the initial weight and Levenberg-Marquardt (LM) algorithm was used to reduce the error. Case study was conducted for Dongfengqu Irrigation District in Hubei Province and the availability of the forecast method has been approved.
Keywords:BP neural network  LM algorithm  genetic algorithm  irrigation water use  forecast.
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号