首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Forest modelling: the gamma shape mixture model and simulation of tree diameter distributions
Authors:Rafa? Podlaski
Institution:1.Department of Nature Protection and Plant Physiology, Institute of Biology,Jan Kochanowski University,Kielce,Poland
Abstract:

? Key message

New types of distribution functions are needed to model the dynamics of stands where important age classes are represented by few trees. In this study the gamma shape mixture model and two simulation methods were used for generating tree diameter data.

? Context

To analyse forest dynamics, it is necessary to know distribution of the characteristics (mainly tree diameters) of trees forming particular developmental phases. In many forest inventories, the measurement of large diameter at breast height (DBH) samples is practically impossible. In this case, DBH distributions can be generated using theoretical models.

? Aims

The aim of this study was to assess the precision of the approximation of empirical DBH data using the gamma shape mixture (GSM) model and kernel density estimation. The strengths and weaknesses of the two simulation methods were presented and discussed.

? Methods

The GSM model was adopted to approximate empirical DBH data collected in 20 near-natural stands. Two simulation methods were used: (a) the procedure based on a multimodal distribution and gamma random numbers (MDGR procedure) and (b) MCMC techniques with Metropolis–Hastings sampling (MH method).

? Results

The GSM model precisely fitted the investigated DBH distributions. The MDGR procedure was slightly more precise than the MH method, especially in the case of the samples of 250 DBHs. The level of homogeneity within the drawn DBH sets was similar for all samples.

? Conclusion

The GSM model is very flexible. The DBH random variates, generated with the use of analysed procedures, represented all tree generations being significant from a biological point of view.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号