首页 | 本学科首页   官方微博 | 高级检索  
     

基于小波分析和BP神经网络的滚动轴承的故障诊断
引用本文:谢培甫. 基于小波分析和BP神经网络的滚动轴承的故障诊断[J]. 农业装备与车辆工程, 2006, 0(2): 45-47
作者姓名:谢培甫
作者单位:中南大学机电工程学院,湖南,长沙,410083;湖南交通职业技术学院,湖南,长沙,410004
摘    要:提出了一种基于小波分析和BP神经网络的滚动轴承故障诊断方法,首先采用小波包对滚动轴承振动信号进行分解与重构,然后提取重构后振动信号的峭度值,将峭度值作为特征参数输入神经网络,进行故障模式识别。通过对实验数据的分析信号表明,能有效地识别滚动轴承工作状态与故障类型。

关 键 词:滚动轴承  故障诊断  峭度  小波分析  神经网络
文章编号:1673-3142(2006)02-0045-03
修稿时间:2005-12-29

Fault Diagnosis For Roller Bearings Based On Wavelet Analysis And BP Neural Network
Xie Peifu. Fault Diagnosis For Roller Bearings Based On Wavelet Analysis And BP Neural Network[J]. Agricultural Equipment & Vehicle Engineering, 2006, 0(2): 45-47
Authors:Xie Peifu
Abstract:A fault-diagnosis method for roller bearings based on wavelet analysis and BP neural network is proposed. Firstly, roller bearing signal is decomposed and reconstructed with wavelet packets;then, the Kurtosis factors of the reconstructed signals are extracted and served as characteristic parameters to be put into neural network;finally, the work condition and fault pattern are identified by the output of the neural network. Analysis returns of the experimental data show that, the proposed method in this paper can be applied in roller bearing fault diagnosis efficiently.
Keywords:roller bearing  fault diagnosis  kurtosis  wavelet analysis  neural network
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号