首页 | 本学科首页   官方微博 | 高级检索  
     

智能化海量空间信息分析与地图制图软件包IMAT设计及构建
引用本文:张维理. 智能化海量空间信息分析与地图制图软件包IMAT设计及构建[J]. 中国农业科学, 2014, 47(16): 3250-3263. DOI: 10.3864/j.issn.0578-1752.2014.16.011
作者姓名:张维理
作者单位:中国农业科学院农业资源与农业区划研究所/农业部作物营养与施肥重点开放实验室,北京 100081
基金项目:科技部科技基础性工作专项(2006FY120200、2012FY112100)
摘    要:【目的】在农业与环境研究领域,受研究条件和手段限制,多数研究实际上只能集中于点过程、局部地区或某一时段问题,只能关注某些特定主题相关现象和机制。由此产生大量分散数据。通过坐标关联可以对原先在各自独立研究中获取的不同类型数据与证据进行关联,这种连接可能赋予原先所认知的过程以新的涵义。海量空间数据分析方法能够从多渠道、多角度获得对事物的认知,并能够利用新的数据与证据不断修订假设。大数据分析的主要难点是海量空间信息不仅体量大,还要根据数据异质类型进行差异化抽提、整合和表达,难以采用现有主流软件工具,针对这一问题,本研究旨在创建一个能够以自动化和人机交互方式对异源、异质海量空间信息进行抽提、整合与大尺度、大比例尺专题图表达的专用工具--智能制图工具(IMAT)。【方法】采用海量空间信息分析方法中的流程设计与软件设计原则构建IMAT。总设计由系统体系架构设计、系统数据支撑平台设计、模块与组件模型设计3部分组成。程序采用C#为编程语言,以NET Framework 4 Extended为软件开发环境,同时调用制图软件包ArcGIS、数据库软件包Access与界面制作软件包DotNet Bar控件。【结果】IMAT含38个独立功能模块,覆盖了对农业与环境领域产生的海量空间信息进行抽提与制图表达所需主要功能,各模块既可独立进行某项特定数据分析与处理,例如,海量信息调用、存贮、空间要素统计、分类码审核、赋码、要素筛选、数据整合、制图表达等,也可通过多模块组合,完成一项比较复杂的数据抽提与表达任务,弥补了国内外主流数据库软件包与专业制图软件包与在处理海量空间信息方面的功能缺失。IMAT数据分析对象为海量空间数据库。在进行数据分析时,IMAT能够根据研究目标设定对各异源、异质、异构库进行信息抽提的规则,并以自动化、批量化方式完成海量空间信息的逻辑结构与存储结构整合;在进行制图表达时,IMAT能在全图设定分幅图差异化要素抽提规则,并以智能化、自动化、人机交互方式完成由多图幅组成的大比例尺专题图全图的视图表达。【结论】在对农业与环境主题相关海量空间信息进行分析时,IMAT既适用于土壤类型、土壤质地等以多等级分类系统表示的专题要素,也适用于土壤养分含量、土壤污染物含量、面源污染排放指数等以量化分级指标表达的专题要素;既可用于对多专题要素与图层的综合性信息抽提与复合性制图表达,还能用于进行不同比例尺、不同分幅类型的可视化地图制图。IMAT设计中采用组建化模块与模型设计构筑系统体系架构,提高了设计与研制效率;利用函数化的海量空间数据集四元表达式作为IMAT系统中各空间数据库接口文件,使得IMAT各模块均能够接受和处理处于数据整合与表达进程不同阶段的异质、异构海量空间信息,从而实现了各功能模块的可装配性,分析人员能根据数据抽提、整合和表达目标选择并灵活组合适宜的功能模块。

关 键 词:智能制图工具  大数据  农业  环境  
收稿时间:2013-12-22

Design and Development of Software Package Intelligent Mapping Tools (IMAT)
ZHANG Wei-Li. Design and Development of Software Package Intelligent Mapping Tools (IMAT)[J]. Scientia Agricultura Sinica, 2014, 47(16): 3250-3263. DOI: 10.3864/j.issn.0578-1752.2014.16.011
Authors:ZHANG Wei-Li
Affiliation:Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences / Key Laboratory of Crop Nutrition and Fertilization, Ministry of Agriculture, Beijing 100081
Abstract:【Objective】In agricultural and environment research area, restrained by financial and technical limitations, in fact, most studies have to focus on specific topics and mechanisms based on point or parcel observations and confined period. As a result, large number of scattered observation data was produced. Different types of observations and evidences previously obtained in separate studies can be related through associated coordinates. Such connections may induce new scientific acquaintance from former observations and evidences. Massive geo-data analysis methods improve the comprehending of process or object complex through multi- channels and with multi-point of view. It is a useful tool to examine and amend the assumptions to the world by taking advantage of the new data and evidence. The main difficulty of the big geo-data analysis comes from not only the treating of large data volume, but also the extracting, integrating and expressing information based on heterogeneous data resources. Since there has been no mainstream software tool available for big geo-data analysis, purpose of the study is to develop a professional tool for extracting and integrating heterologous massive geo-information from different resources as well as for making thematic maps with high resolution on large-scales. The intelligent software package should finish data processing and mapping automatically or human-computer interactively.【Method】Principles and rules of methodology for massive geo-data analysis and software design were applied for IMAT (Intelligent mapping tools) design. The whole design consisted of three parts, the system architecture, the system data supporting platform, and the design for system modules and models. For IMAT software development, C# was used as the programming language, NET Framework 4 Extended was applied as development environment, functions and components from software packages of ArcGIS, Access and DotNet Bar were called. 【Result】With 38 independent functional modules, IMAT provides the main functions for analyzing massive spatial information and cartographic representing, which are required in agriculture and the environment research and working area. Each module can be used to independently conduct certain data analysis and processing, for example, the big data loading and storing, the statistical analysis, classification and coding of space elements, the data selecting, integration and mapping, etc. It can also be used as a combination of several modules to complete a more complex task of data extraction and expression. IMAT has made up the lack in functions to deal with massive spatial data provided by mainstream database package and GIS software package. The objects for IMAT data analysis are the massive spatial database. When doing data analysis with IMAT, rules for data extracting can be set down based on thematic objectives. The integration of massive spatial data within logical data structure as well as storage data structure can be processed automatically or in batch processing way. When making cartographic representations with IMAT, rules and parameters for the whole map composed of a series map sheets can be set, through which differentiated data extracting and mapping for map sheets can be carried out. The data analysis and mapping procedures can be operated by intelligent and automatic way as well as human-computer interactive approach.【Conclusion】For agricultural and environmental topics, IMAT can be applied to analyze and express thematic elements both for soil types and soil texture that expressed by classification, and for soil nutrient and contaminant concentration or non-point source pollution index that expressed by quantity. In addition, it can be used for extracting multi thematic elements and for mapping with different map scales or map sheets. In IMAT design, the whole system was assembled by separated modules and models, so that both the designing and the programming of the software packages could be completed efficiently. By using a four component expressions as interface files among different massive geo-data aggregate from different modules, each module of IMAT is able to receive and process geo-data aggregate of different heterogeneity at different data processing steps. According to data processing target, whether for data extracting, integrating or mapping, required functional modules can be chosen and assembled with high flexibility.
Keywords:intelligent mapping tools    big data    agriculture    environment  
本文献已被 CNKI 等数据库收录!
点击此处可从《中国农业科学》浏览原始摘要信息
点击此处可从《中国农业科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号