首页 | 本学科首页   官方微博 | 高级检索  
     

聚类、粗糙集与决策树的组合算法在地力评价中的应用
引用本文:陈桂芬,马丽,董玮,辛敏刚. 聚类、粗糙集与决策树的组合算法在地力评价中的应用[J]. 中国农业科学, 2011, 44(23): 4833-4840. DOI: 10.3864/j.issn.0578-1752.2011.23.009
作者姓名:陈桂芬  马丽  董玮  辛敏刚
作者单位:1.吉林农业大学信息技术学院,长春 130118;2.吉林省农安县农业技术推广总站,吉林农安 130200
基金项目:国家"863"计划项目,国家星火计划项目
摘    要: 【目的】地力评价方法大多数有一定的主观性,较少考虑土壤各属性间的依赖关系。论文旨在采用数据挖掘方法,寻求地力等级划分的新方法。【方法】结合农安县耕地调查数据,应用K-means聚类方法、Johnson粗糙集属性约简算法与C4.5决策树算法相结合的优化算法评价地力等级。【结果】使用K-means聚类方法,得到最佳学习样本数;使用粗糙集属性约简和决策树相结合的方法,去掉了冗余属性7个,决策树模型共有节点317个,其中叶节点个数为159个,生成规则159条,模型准确率为82.08%。与未聚类和未约简的方法相比,决策树结点个数减少41.62%。【结论】使用该组合算法,在保证模型准确率的同时,降低了算法的时间和空间复杂性,提高了挖掘效率。

关 键 词:聚类  粗糙集  决策树  土壤评价  地力等级
收稿时间:2010-07-26

Applied Research of Combinatorial Algorithm of Clustering, Rough Set and Decision Tree Method in Productivity Evaluation
CHEN Gui-fen , MA Li , DONG Wei , XIN Min-gang. Applied Research of Combinatorial Algorithm of Clustering, Rough Set and Decision Tree Method in Productivity Evaluation[J]. Scientia Agricultura Sinica, 2011, 44(23): 4833-4840. DOI: 10.3864/j.issn.0578-1752.2011.23.009
Authors:CHEN Gui-fen    MA Li    DONG Wei    XIN Min-gang
Abstract:【Objective】 Fertility evaluation method has a certain subjective and less considers the dependence relation among soil attributes. This paper is aimed to seek a new method of productivity evaluation by data mining method. 【Method】 Based on Nong’an cultivated land survey data, the paper used optimization algorithm of K-means clustering method, Johnson rough set attribute reduction algorithm and C4.5 decision tree algorithm to evaluate the productivity grade. 【Result】 The best learning samples are obtained by using K-means clustering method. Rough sets are used in soil attribute reduction, and 7 soil redundant attributes are removed. The decision tree model has 317 nodes and 159 leaf nodes, extracts 159 rules, model accuracy is 82.08%. The decision tree node number decreased by 41.62% compared with no-clustering and no-reduction approaches. 【Conclusion】 Using the combination algorithm, while the accuracy of the model is ensured, the algorithm time and space complexity are reduced and the mining efficiency is improved.
Keywords:clustering  rough set  decision tree  soil evaluation  productivity grade
本文献已被 万方数据 等数据库收录!
点击此处可从《中国农业科学》浏览原始摘要信息
点击此处可从《中国农业科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号