首页 | 本学科首页   官方微博 | 高级检索  
     

基于红光波段冠层SIF降尺度的小麦条锈病遥感监测
作者姓名:竞霞  赵佳琪  叶启星  张震华  张源芳
作者单位:西安科技大学
基金项目:国家自然科学基金项目(42171394)和西藏自治区自然科学基金项目(XZ202101ZR0085G)
摘    要:为减弱冠层几何结构等因素对传感器探测到的冠层日光诱导叶绿素荧光(Solar-induced chlorophyll fluorescence, SIF)的影响,探讨了条锈病胁迫下红光波段荧光(Red SIF,RSIF)的响应特性,并以RSIF为自变量构建了小麦条锈病遥感监测的线性回归(Simple linear regression, SLR)及非线性回归(Non-linear regression, NLR)模型。结果表明:叶片尺度RSIF在小麦条锈病遥感监测中具有较大优势,其与小麦条锈病病情严重度(Severity level, SL)间相关系数较远红光波段SIF(Far-red SIF,FRSIF)提高13.2%,以叶片尺度RSIF为自变量构建的SLR及NLR模型预测DSL与实测DSL之间R2较FRSIF分别增加9.8%、38.9%,RMSE分别降低23.1%、36.4%。此外,降尺度处理能够提高RSIF监测小麦条锈病的精度,叶片尺度RSIF与DSL之间R2较冠层尺度增加126.3%,以叶片尺度RSIF为自变量构建的SLR和NLR模型预测DSL与实测DSL间R2较冠层尺度分别提高114.3%和233.3%,RMSE分别降低16.7%、15.4%。本文提出方法可提高小麦条锈病遥感监测精度,同时对其它胁迫的遥感监测具有一定的参考价值。

关 键 词:小麦条锈病  遥感监测  日光诱导叶绿素荧光  红光波段  降尺度  模型精度  
收稿时间:2023-11-11
点击此处可从《农业机械学报》浏览原始摘要信息
点击此处可从《农业机械学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号