Estimating above-ground biomass by fusion of LiDAR and multispectral data in subtropical woody plant communities in topographically complex terrain in North-eastern Australia |
| |
Authors: | Sisira Ediriweera Sumith Pathirana Tim Danaher Doland Nichols |
| |
Affiliation: | 1. School of Environment, Science and Engineering, Southern Cross Uni-versity, Lismore, NSW 2480 Australia 2. 0ffice of Environment and Heritage, Alstonville, NSW 2477 Australia |
| |
Abstract: | We investigated a strategy to improve predicting capacity of plot-scale above-ground biomass(AGB) by fusion of LiDAR and Landsat5 TM derived biophysical variables for subtropical rainforest and eucalypts dominated forest in topographically complex landscapes in North-eastern Australia. Investigation was carried out in two study areas separately and in combination. From each plot of both study areas, LiDAR derived structural parameters of vegetation and reflectance of all Landsat bands, vegetation indices were employed. The regression analysis was carried out separately for LiDAR and Landsat derived variables individually and in combination. Strong relationships were found with LiDAR alone for eucalypts dominated forest and combined sites compared to the accuracy of AGB estimates by Landsat data. Fusing LiDAR with Landsat5 TM derived variables increased overall performance for the eucalypt forest and combined sites data by describing extra variation(3% for eucalypt forest and 2% combined sites) of field estimated plot-scale above-ground biomass. In contrast, separate LiDAR and imagery data, andfusion of LiDAR and Landsat data performed poorly across structurally complex closed canopy subtropical rainforest. These findings reinforced that obtaining accurate estimates of above ground biomass using remotely sensed data is a function of the complexity of horizontal and vertical structural diversity of vegetation. |
| |
Keywords: | Fusion above-ground biomass LiDAR multispectral data subtropical plant communities |
本文献已被 CNKI 维普 万方数据 SpringerLink 等数据库收录! |