首页 | 本学科首页   官方微博 | 高级检索  
     

基于最小噪声分离的籽棉异性纤维高光谱图像识别(英文)
引用本文:魏新华,吴姝,徐来齐,沈宝国,李玫瑾. 基于最小噪声分离的籽棉异性纤维高光谱图像识别(英文)[J]. 农业工程学报, 2014, 30(9): 243-248
作者姓名:魏新华  吴姝  徐来齐  沈宝国  李玫瑾
作者单位:1. 江苏大学现代农业装备与技术省部共建教育部重点实验室,镇江 212013;1. 江苏大学现代农业装备与技术省部共建教育部重点实验室,镇江 212013;1. 江苏大学现代农业装备与技术省部共建教育部重点实验室,镇江 212013;2. 江苏省联合职业技术学院镇江分院,镇江 212016;1. 江苏大学现代农业装备与技术省部共建教育部重点实验室,镇江 212013
基金项目:Supported by the priority academic Program development of Jiangsu Higher Education Institutions (Jiangsu financial education (2011) No. 8), the key laboratory of agricultural equipment intelligent high technology research in Jiangsu (BM2009703), and the Program for new century excellent talents in university (NCET-09-0731)
摘    要:针对籽棉表层多类难检异性纤维,包括纸屑、白发、丙纶丝、化纤和地膜等5种白色物质,采用高光谱技术和最小噪声分离(minimum noise fraction,MNF)分析方法对含有异性纤维的籽棉图像进行研究。该文在400~1 000 nm的光谱范围内采集高光谱图像,根据光谱曲线选取子区域,应用最小噪声分离分析方法降维、去噪。取MNF变换后的前4幅分量图像,通过视觉评价,选定最佳成分图像并融合中值滤波、灰度变化等图像处理的方法确定最佳分割图像,提取异性纤维。试验结果表明,对于以上5种异性纤维,该方法的识别率达到91.0%。该研究可为棉花异性纤维检测系统的开发提供参考。

关 键 词:棉花;检测;图像处理;异性纤维;高光谱成像;降维;最小噪声分离
收稿时间:2013-03-11
修稿时间:2014-04-02

Identification of foreign fibers of seed cotton using hyper-spectral images based on minimum noise fraction
Wei Xinhu,Wu Shu,Xu Laiqi,Shen Baoguo and Li Meijin. Identification of foreign fibers of seed cotton using hyper-spectral images based on minimum noise fraction[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(9): 243-248
Authors:Wei Xinhu  Wu Shu  Xu Laiqi  Shen Baoguo  Li Meijin
Affiliation:1. Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education and Jiangsu Province, Jiangsu University, Zhenjiang 212013, China;1. Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education and Jiangsu Province, Jiangsu University, Zhenjiang 212013, China;1. Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education and Jiangsu Province, Jiangsu University, Zhenjiang 212013, China;2. Zhenjiang College of Jiangsu Union Technical Institute, Zhenjiang 212016, China;1. Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education and Jiangsu Province, Jiangsu University, Zhenjiang 212013, China
Abstract:Abstract: In order to improve the recognition accuracy of seed cotton foreign fibers, the identification method in hyper-spectral images based on minimum noise fraction (MNF) was proposed and applied to feature extraction to reduce the dimension of multispectral images. This method can reduce the numbers of hyper-spectral data, and made the images noise reduce to the minimum and also reduce the computational requirements for subsequent processing. This paper selected white foreign fibers and cotton, which were in small discrimination, as the research object with 512 bands in the wavelength range of 400-1 000 nm. The spectral subset was selected according to the spectral curve, and then reducing dimension and denoising by using analysis method of MNF. The best component image was selected from the first four component images of MNF transformation by manual visual evaluation. The methods of image processing including median filtering, gray change method and so on were used to determine the best image segmentation and then extract the different fibers. Experimental results show that, for more than 5 kinds of different fibers, the recognition rate of the method reached up to 91%.
Keywords:cotton   detection   image processing   foreign materials   hyper-spectral imaging   dimensionality reduction   minimum noise fraction
本文献已被 CNKI 等数据库收录!
点击此处可从《农业工程学报》浏览原始摘要信息
点击此处可从《农业工程学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号