首页 | 本学科首页   官方微博 | 高级检索  
     

碱性盐胁迫对夏蜡梅生长与离子分布的影响
引用本文:周贝宁,毛恋,花壮壮,芦建国. 碱性盐胁迫对夏蜡梅生长与离子分布的影响[J]. 浙江农业学报, 2022, 34(1): 79-88. DOI: 10.3969/j.issn.1004-1524.2022.01.10
作者姓名:周贝宁  毛恋  花壮壮  芦建国
作者单位:南京林业大学 风景园林学院,江苏 南京 210037
基金项目:江苏高校品牌专业建设工程(PPZY2015A063);江苏高校优势学科建设工程(PAPD)
摘    要:采用不同浓度的碱性盐(NaHCO3)溶液对3年生夏蜡梅实生苗进行处理,从形态生长和离子运输途径分析夏蜡梅对碱性盐胁迫的响应机制,为夏蜡梅的合理开发利用提供理论指导.结果表明:夏蜡梅苗高、地径相对生长量、生物量以及根冠比均随着盐碱胁迫的加重而不同程度的减少;随着碱性盐浓度的增加,各器官中Na+含量均高于对照,其排序为:根...

关 键 词:夏蜡梅  碱性盐胁迫  生长  离子运输
收稿时间:2020-09-06

Effects of alkaline salt stress on growth and ion allocation of Sinocalycanthus chinensis
ZHOU Beining,MAO Lian,HUA Zhuangzhuang,LU Jianguo. Effects of alkaline salt stress on growth and ion allocation of Sinocalycanthus chinensis[J]. Acta Agriculturae Zhejiangensis, 2022, 34(1): 79-88. DOI: 10.3969/j.issn.1004-1524.2022.01.10
Authors:ZHOU Beining  MAO Lian  HUA Zhuangzhuang  LU Jianguo
Affiliation:College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China
Abstract:In this study, the three years old Sinocalycanthus chinensis seedlings were treated with different concentrations of alkaline salts (NaHCO3) solutions, and the response mechanism of Sinocalycanthus chinensis to alkaline salt stress was analyzed from the morphological growth and ion transport routes, so as to provide theoretical guidance for the rational development and utilization of Sinocalycanthus chinensis. The results showed that the seedling height, relative growth of ground diameter, biomass and root-shoot ratio decreased with the increase of saline-alkali stress. With the increase of saline-alkali concentration, the Na+ content in each organ were significantly higher than that in the control group, the sequence was as follows: root>leaf>stem. Under low concentration alkaline salt stress, the K+ content sequence was as follows: stem>root>leaf, while under high concentration stress, the K+ content sequence was as follows: leaf>stem>root. The Ca2+ content sequence was as follows: leaf>root>stem. The K+/Na+ ratio in the stems and leaves of Sinocalycanthus chinensis was much higher than that in the roots and the Ca2+/Na+ ratio in the leaves was much higher than that in the stems and roots. The sequence of root-stem selective transport capacity of K+ and Ca2+: K+>Ca2+, stem-leaf: Ca2+>K+, while the root-leaf selective transport capacity was basically the same.In conclusion,under alkaline salt stress, the stems and leaves of Sinocalycanthus chinensis prevented the entry of Na+ by absorbing K+ and Ca2+, separated the Na+ storage area in the roots to reduce the damage of salt ions to the aboveground part, and the leaves maintained ion balance by increasing the absorption of mineral elements.
Keywords:Sinocalycanthus chinensis  alkaline salt stress  growth  ion transport  
点击此处可从《浙江农业学报》浏览原始摘要信息
点击此处可从《浙江农业学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号