Role of continuous phase protein on the oxidative stability of fish oil-in-water emulsions |
| |
Authors: | Faraji Habibollah McClements D Julian Decker Eric A |
| |
Affiliation: | Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA. |
| |
Abstract: | Whey protein isolate (WPI), soy protein isolate (SPI), and sodium caseinate (CAS) can inhibit lipid oxidation when they produce a positive charge at the interface of emulsion droplets. However, when proteins are used to stabilize oil-in-water emulsions, only a fraction of them actually absorb to the emulsion droplets, with the rest remaining in the continuous phase. The impact of these continuous phase proteins on the oxidative stability of protein-stabilized emulsions is not well understood. WPI-stabilized menhaden oil-in-water emulsions were prepared by high-pressure homogenization. In some experiments WPI was removed from the continuous phase of the emulsions through repeated centrifugation and resuspension of the emulsion droplets (washed emulsion). Unwashed emulsions were more oxidatively stable than washed emulsions at pH 7.0, suggesting that continuous phase proteins were antioxidative. The oxidative stability of emulsions containing different kinds of protein in the continuous phase decreased in the order SPI > CAS > WPI, as determined by both hydroperoxide and headspace propanal formation. Iron-binding studies showed that the chelating ability of the proteins decreased in the order CAS > SPI > WPI. The free sulfhydryls of both WPI and SPI were involved in their antioxidant activity. This research shows that continuous phase proteins could be an effective means of protecting omega-3 fatty acids from oxidative deterioration. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|