首页 | 本学科首页   官方微博 | 高级检索  
     

一种新的TS模型辨识算法
引用本文:林妹娇,陈水利. 一种新的TS模型辨识算法[J]. 厦门水产学院学报, 2013, 0(3): 219-224
作者姓名:林妹娇  陈水利
作者单位:[1]福州大学数学与计算机科学学院,福建福州350108 [2]集美大学理学院,福建厦门361021
基金项目:福建省科技厅产学研重大项目(2011H6020); 福建省自然科学基金资助项目(2011J01013); 厦门市科技计划项目(3502Z20123022)
摘    要:提出一种新的TS模型辨识算法.该算法思想:首先采用MCR算法(Mountain C-Regressionmethod)自动确定聚类数目和初始聚类中心,然后采用改进的GK(Gustafon-Kessl)聚类算法得到最优的划分矩阵,再根据最优划分矩阵计算系统前件参数的最优值,最后用自适应粒子群优化算法(Adaptive Parti-cle Swarm Optimization,APSO)对后件参数进行优化.此辨识算法能够用较少的规则数描述给定的未知系统,并且容易实现.仿真实验表明该算法能够实现非线性系统的辨识,并且可获得相对高的精度.

关 键 词:TS模型辨识  MCR算法  改进的GK聚类算法  自适应粒子群优化算法

A Novel TS Model Identification Algorithm
LIN Mei-jiao,CHEN Shui-li. A Novel TS Model Identification Algorithm[J]. , 2013, 0(3): 219-224
Authors:LIN Mei-jiao  CHEN Shui-li
Affiliation:1. College of Mathematics and Computer Science, Fuzhou University, Fuzhou 350108, China; 2. School of Science, Jimei University, Xiamen 361021, China)
Abstract:In this paper, a novel TS model identification algorithm is proposed. The identification algo-rithm is on the base of the following ideas: Firstly, the Mountain C-Regression method (MCR) is used to au- tomatically identify the number of clusters and initial cluster center. Secondly, the modified Gustafson - Kessl (GK) algorithm is used to obtain an optimal input - output space fuzzy partition matrix which provids the val-ues of premise parameters. Finally, Adaptive Particle Swarm Optimization (APSO) algorithm is adopted to precisely adjust consequent parameters. It can express a given unknown system with a small number of fuzzy rules and is easy to implement. The simulation results show the proposed algorithm realizes the identification of the nonlinear system with relative high accuracy.
Keywords:Takagi-Sugeno model identification  Mountain C-Regression method  MCR  modified GK algorithm  Adaptive Particle Swarm Optimization  APSO
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号