首页 | 本学科首页   官方微博 | 高级检索  
     

基于粒子群算法和支持向量机的黄花菜叶部病害识别
引用本文:孙瑜,张永梅,武玉军. 基于粒子群算法和支持向量机的黄花菜叶部病害识别[J]. 中国农学通报, 2022, 38(8): 135-140. DOI: 10.11924/j.issn.1000-6850.casb2021-1215
作者姓名:孙瑜  张永梅  武玉军
作者单位:1.山西农业大学信息科学与工程学院,山西太谷 030801;2.大同大学,山西大同 037000
基金项目:国家自然科学基金“数字图像处理技术辅助相场法模拟压电织构陶瓷晶粒取向生长”(52102138);
摘    要:
使用数字图像处理技术,以黄花菜叶部病害图像为识别对象,基于Lab空间和K-means聚类算法分割病害区域,提取目标区域的颜色特征、方向梯度直方图(histogram of oriented gradient,HOG)特征和形状特征,分别建立单一特征模型和特征融合模型,采用粒子群(particle swarm optimization,PSO)算法通过交叉验证优化支持向量机(support vector machine,SVM)模型的惩罚因子和核参数,建立基于PSO-SVM的多特征融合分类模型识别黄花菜病害。基于SVM的多特征融合分类模型识别率高于单一特征分类模型,识别率可达为81.67%;基于PSO-SVM多特征融合分类模型识别率高达92.39%。基于PSO-SVM的多特征分类模型识别率高,可以及时、便捷、高效地识别黄花菜病害。

关 键 词:图像处理  黄花菜  病害识别  支持向量机  粒子群算法  多特征融合  
收稿时间:2021-12-28

Recognition of Hemerocallis citrina Leaf Disease Based on PSO and SVM
SUN Yu,ZHANG Yongmei,WU Yujun. Recognition of Hemerocallis citrina Leaf Disease Based on PSO and SVM[J]. Chinese Agricultural Science Bulletin, 2022, 38(8): 135-140. DOI: 10.11924/j.issn.1000-6850.casb2021-1215
Authors:SUN Yu  ZHANG Yongmei  WU Yujun
Affiliation:1.College of Information Science and Engineering, Shanxi Agriculture University, Taigu, Shanxi 030801;2.Datong University, Datong, Shanxi 037000
Abstract:
By using digital image processing technology, the disease image of Hemerocallis citrina leaf was taken as the recognition object. The disease area was segmented based on Lab space and K-means clustering algorithm, and the color characteristics, histogram of oriented gradient (HOG) and shape characteristics of the target areas were extracted from the images. The single-feature model and multi-feature model were established respectively based on the extracted features. Particle swarm optimization (PSO) algorithm was used to optimize the penalty factor and kernel parameter of the support vector machine (SVM) model through cross validation. Multi-feature classification model based on PSO-SVM was established to identify diseases of H. citrina leaves. The recognition rate of SVM based multi-feature classification model was higher than that of single-feature classification model, and the recognition rate could reach 81.67%. The recognition rate of multi-feature classification model based on PSO-SVM was as high as 92.39%. The multi-feature classification model based on PSO-SVM has high recognition rate and can identify the disease of H. citrina leaf timely, conveniently and efficiently.
Keywords:image processing  Hemerocallis citrina  disease recognition  support vector machine (SVM)  particle swarm optimization (PSO)  multi-feature fusion  
点击此处可从《中国农学通报》浏览原始摘要信息
点击此处可从《中国农学通报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号