首页 | 本学科首页   官方微博 | 高级检索  
     

ARIMA模型在贵州省农产品价格预测中的应用——以辣椒为例
引用本文:韩雯. ARIMA模型在贵州省农产品价格预测中的应用——以辣椒为例[J]. 安徽农业科学, 2011, 39(21): 13226-13227,13229
作者姓名:韩雯
作者单位:贵州财经学院金融学院,贵州贵阳,550004
摘    要:由于贵州省辣椒月价格呈现季节性,因此以2007年1月至2010年12月贵州省辣椒月价格为例,在运用季节分解方法剔除其季节因素形成新序列的基础上,构建了非平稳时间序列ARIMA(p,d,q)模型,并预测了辣椒未来的月价。结果表明,拟合指标优良的ARI-MA(1,1,1)模型能很好地预测辣椒月价格趋势,并将辣椒价格的预测值与实际值的相对误差基本控制在9%以内,实证分析结果证明了ARIMA模型的季节分解方法在贵州省农产品价格预测中的预测性和可行性。

关 键 词:贵州省  农产品价格  季节分解  价格预测  ARIMA模型

The Application of ARIMA Model in the Prediction of the Price of Agricultural Products in Guizhou
HAN Wen. The Application of ARIMA Model in the Prediction of the Price of Agricultural Products in Guizhou[J]. Journal of Anhui Agricultural Sciences, 2011, 39(21): 13226-13227,13229
Authors:HAN Wen
Affiliation:HAN Wen(Financial College,Guizhou College of Finance and Economics,Guiyang,Guizhou 550004)
Abstract:Because the seasonal nature of monthly price of hot pepper in Guizhou Province,therefore,taking the case of monthly price of hot pepper in Guizhou Province from January in 2007 to December in 2010,seasonal decomposition method was used to reject the new sequence formed by seasonal factors,nonstationary time series ARIMA(p,d,q) Model was constructed to predict the monthly price of hot pepper.The results indicated that the ARIMA(1,1,1) Model could predict the pepper's price trend,and the difference between the forecast price and the actual price was more or less than 9%.The empirical results indicated the predictability and feasibility of seasonal decomposition method of ARIMA Model in the prediction of the price of agricultural products in Guizhou Province.
Keywords:Guizhou Province  The price of agricultural products  Seasonal decomposition  The prediction of price  Autoregressive Integrated Moving Average Model
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号