首页 | 本学科首页   官方微博 | 高级检索  
     

基于BP神经网络的辽河源头区水质评价研究
引用本文:卞建民1,胡昱欣1,李育松1,马永祥2,边静3. 基于BP神经网络的辽河源头区水质评价研究[J]. 水土保持研究, 2014, 21(1): 147-151
作者姓名:卞建民1  胡昱欣1  李育松1  马永祥2  边静3
作者单位:1. 吉林大学 环境与资源学院, 长春 130021;2. 宁夏回族自治区煤田地质局, 银川 750004;3. 吉林省地质环境监测总站, 长春 130021
摘    要:
基于辽河源头区水环境问题日益突出的现状,该文开展了辽河源头区水环境质量的研究,旨在对区内的水体质量进行分析评价。通过资料收集与汇总,基于BP人工神经网络结构的思想和理论,利用研究区内13个控制断面的水质监测数据,建立了包括pH、溶解氧、氨氮、化学需氧量、五日生化需氧量、高锰酸盐指数的水质综合评价模型,并应用训练好的模型进行仿真运算及水质综合评价。结果显示,在选取的13个断面中,约76.92%的断面为Ⅴ类—劣Ⅴ类水质,仅有23.08%的断面水质级别在Ⅱ—Ⅲ类之间,研究区上游断面的水质状况较好,中下游的水质较差。将该结果与《环境公报》公布的主要断面水质结果进行对比,81.25%的评价结果相同,采用BP神经网络对研究区水质进行综合评价具有较强的适用性和可靠性。

关 键 词:辽河源头区  BP神经网络  网络训练  水质评价

Water Quality Assessment in Source Area of Liao River Based on BP Neural Network
BIAN Jian-min1,HU Yu-xin1,LI Yu-song1,MA Yong-xiang2,BIAN Jing3. Water Quality Assessment in Source Area of Liao River Based on BP Neural Network[J]. Research of Soil and Water Conservation, 2014, 21(1): 147-151
Authors:BIAN Jian-min1  HU Yu-xin1  LI Yu-song1  MA Yong-xiang2  BIAN Jing3
Affiliation:1. College of Environment and Resources, Jilin University, Changchun 130021, China;2. Ningxia Hui Autonomous Region Bureau of Coal Geological Exploration, Yinchuan 750004, China;3. Geo-Environmental Monitoring Central Station of Jilin Province, Changchun 130021, China
Abstract:
Based on the present situation that the water environmental issues in source area of Liao River have become increasingly prominent, the research for water environment quality was carried out to evaluate and analyze the regional water quality. Through data collection and summary, a comprehensive water quality evaluation model was established based on the thought and theory of BP artificial neural network with including pH, DO, ammonia nitrogen, COD, BOD5, potassium permanganate index, and finished with water quality monitoring data of the 13 sections in the study area. After training well, it can just be applied in model simulating operation and water quality comprehensive evaluation. The results have showed that in the selected sections, approximately 76.92% of the sections are between class V and worse than class V, leaving only 23.08% of the sections whose water quality levels are between class Ⅱand class Ⅲ in the selected 13 sections. The sections located in the upper reaches have a better water quality than that in the downstream. Compared the evaluation results with the results of main sections published in Environment Communique, 81.25% of the evaluation results are identical. It has strong applicability and reliability that BP neural network was used to comprehensively evaluate water quality in the study area.
Keywords:source area of Liao River  BP neural network  network training  water quality assessment
本文献已被 CNKI 等数据库收录!
点击此处可从《水土保持研究》浏览原始摘要信息
点击此处可从《水土保持研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号