首页 | 本学科首页   官方微博 | 高级检索  
     


Nonparametric Bootstrap Confidence Intervals for Variance Components Applied to Interlaboratory Comparisons
Authors:Brent D. Burch
Affiliation:1. Department of Mathematics and Statistics, Northern Arizona University, Flagstaff, AZ, 86011-5717, USA
Abstract:Exact confidence intervals for variance components in linear mixed models rely heavily on normal distribution assumptions. If the random effects in the model are not normally distributed, then the true coverage probabilities of these conventional intervals may be erratic. In this paper we examine the performance of nonparametric bootstrap confidence intervals based on restricted maximum likelihood (REML) estimators. Asymptotic theory suggests that these intervals will achieve the nominal coverage value as the sample size increases. Incorporating a small-sample adjustment term in the bootstrap confidence interval construction process improves the performance of these intervals for small to intermediate sample sizes. Simulation studies suggest that the bootstrap standard method (with a transformation) and the bootstrap bias-corrected and accelerated (BC a ) method produce confidence intervals that have good coverage probabilities under a variety of distribution assumptions. For an interlaboratory comparison of mercury concentration in oyster tissue, a balanced one-way random effects model is used to quantify the proportion of the variation in mercury concentration that can be attributed to the laboratories. In this application the exact confidence interval using normal distribution theory produces misleading results and inferences based on nonparametric bootstrap procedures are more appropriate.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号